We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Image Recognition Software Increases Accuracy of Malaria Diagnosis

By LabMedica International staff writers
Posted on 31 Aug 2014
A facial recognition software program has been adapted to assist in the identification of the malaria parasite by microscopic examination of blood smears.

To develop a simpler, more effective visual method to diagnose malaria, a team of Scandinavian researchers coopted computer vision algorithms similar to those used in facial recognition systems. More...
The program operates on a digitalized image of a thin layer of blood that had been smeared on a microscope slide. The algorithm analyzes more than 50,000 red blood cells per sample and ranks them according to likelihood of the cell being infected. The program then generates a panel of images of about a hundred cells most likely to contain the parasite. This panel is then evaluated by an experience microscopist who makes the final diagnosis.

To verify the technique Giemsa-stained thin blood films with Plasmodium falciparum ring-stage trophozoites (n = 27) and uninfected controls (n = 20) were digitally scanned with an oil immersion objective to capture approximately 50,000 erythrocytes per sample. Parasite candidate regions were identified based on color and object size, followed by extraction of image features (local binary patterns, local contrast, and Scale-invariant feature transform descriptors) used as input to a support vector machine classifier. The classifier was trained on digital slides from ten patients and validated on six samples.

From each digitized area of a blood smear, a panel with the 128 most probable parasite candidate regions was generated. Two expert microscopists were asked to visually inspect the panel on a tablet computer and to judge whether the patient was infected with P. falciparum. The method achieved a diagnostic sensitivity and specificity of 95% and 100% as well as 90% and 100% for the two readers respectively using the diagnostic tool. Parasitemia was separately calculated by an automated system and the correlation coefficient between manual and automated parasitemia counts was 0.97.

"We are not suggesting that the whole malaria diagnostic process could or should be automated. Rather, our aim is to develop methods that are significantly less labor intensive than the traditional ones and have a potential to considerably increase the throughput in malaria diagnostics," said senior author Dr. Johan Lundin, research director at the Institute for Molecular Medicine (Helsinki, Finland).

The study with complete description of the new diagnostic approach was published in the August 21, 2014, online edition of the journal PLOS One.

Related Links:

Institute for Molecular Medicine



Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
ESR Analyzer
TEST1 2.0
New
Autoimmune Liver Diseases Assay
Microblot-Array Liver Profile Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Molecular Diagnostics

view channel
Image: EvoLiver is the first test to receive FDA Breakthrough Device Designation in five years in the liver cancer surveillance space (Photo courtesy of Mursla Bio)

Patient-Friendly Blood Test to Transform Liver Cancer Surveillance

Hepatocellular carcinoma (HCC), the most common form of primary liver cancer, is the fastest-growing cause of cancer-related deaths. Although clinical guidelines recommend routine surveillance for high-risk... Read more

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: CellLENS enables the potential precision therapy strategies against specific immune cell populations in the tissue environment (Photo courtesy of MIT)

New AI System Uncovers Hidden Cell Subtypes to Advance Cancer Immunotherapy

To produce effective targeted therapies for cancer, scientists need to isolate the genetic and phenotypic characteristics of cancer cells, both within and across different tumors. These differences significantly... Read more

Technology

view channel
Image: The Check4 gene-detection platform (Photo courtesy of IdentifySensors)

Electronic Biosensors Used to Detect Pathogens Can Rapidly Detect Cancer Cells

A major challenge in healthcare is the early and affordable detection of serious diseases such as cancer. Early diagnosis remains difficult due to the complexity of identifying specific genetic markers... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.