We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Illumina

Illumina develops, manufactures and markets integrated systems for the analysis of genetic variations and biological ... read more Featured Products: More products

Download Mobile App




Genome Sequencing of MRSA Infection Predicts Disease Severity

By LabMedica International staff writers
Posted on 24 Apr 2014
Bacterial pathogens, such as methicillin-resistant Staphylococcus aureus (MRSA), cause disease in part due to toxicity, or the bacterium's ability to damage a host's tissue.

The spread of the antibiotic-resistant pathogen remains a concerning public health problem, especially among doctors trying to determine appropriate treatment options for infected patients.

Microbiologists at the University of Bath (UK) and a team of international scientists used whole genome sequences from 90 MRSA isolates to identify over 100 genetic loci associated with toxicity. More...
Bacterial adhesion to human fibronectin and fibrinogen was assessed and adherent bacteria were calculated by using the crystal violet method and absorbance measured at A595 using a microtiter plate reader. The toxicity of individual isolates was assayed in three ways.

The identification of genetic variation in the clinical isolates was studied using unique index-tagged libraries created for each sample, and up to 12 separate libraries were sequenced in each of eight channels in the Genome Analyzer GAIIx cells (Illumina; San Diego, CA, USA) with 75-base paired-end reads.

The authors found that by using whole genome sequences from 90 MRSA isolates they were able to identify over 100 genetic loci associated with toxicity and despite belonging to the same ST239 clone, the isolates varied greatly in toxicity. Importantly, the highly toxic isolates shared a common genetic signature. By looking for this signature in the MRSA genome, the investigators were able to predict which isolates were the most toxic and thus more likely to cause severe disease when used to infect mice.

Ruth C. Massey, PhD, the lead author of the study, said, “As the cost and speed of genome sequencing decreases, it is becoming increasingly feasible to sequence the genome of an infecting organism. In a clinical setting, sequencing may be useful for deciding the course of MRSA treatment. For example, a clinician may treat a highly toxic infection more aggressively, including prescribing certain antibiotics known to reduce toxin expression. The patient also may be monitored more closely for complications and isolated from others to help control the spread of infection.” The study was published on April 9, 2014, in the journal Genome Research.

Related Links:

University of Bath
Illumina



Gold Member
Blood Gas Analyzer
Stat Profile pHOx
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
Pipette
Accumax Smart Series
Gel Cards
DG Gel Cards
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Sickle cell disease patients with higher levels of RMVs, AMVs, and EMVs were found to have more severe disease (Photo courtesy of Adobe Stock)

Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients

Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.