We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Molecular Probe Lights Up Staph Infections

By LabMedica International staff writers
Posted on 17 Feb 2014
A novel chemical probe comprising a self-quenching fluorescently labeled oligonucleotide allows for the rapid, noninvasive detection of staphylococcal (staph) infections.

To more easily identify sites of staph infection investigators at the University of Iowa (Iowa City, USA) created a novel molecular probe. More...
The probe comprised a pair of deoxythymidines flanked by several 2′-O-methyl–modified nucleotides. Various chemical modifications rendered the molecule resistant to mammalian serum nucleases while leaving it susceptible to the action of staphylococcal micrococcal nuclease (MN). A fluorophore was attached to one end of the probe while a molecule that quenched the fluorescence was attached to the other. The presence of the quencher prevented emission of any fluorescent light.

The action of Staphylococcus aureus MN, an endo-exonuclease that digests single-stranded and double-stranded DNA and RNA, digested the probe and liberated the fluorophore from the suppressing effect of the quencher. As the probe was susceptible to digestion only by staph MN, the appearance of fluorescence pinpointed the site of bacterial infection.

The probe's fluorescence was activated in culture supernatants of S. aureus but not in culture supernatants of several other pathogenic bacteria. Systemic administration of this probe to mice bearing S. aureus muscle infections resulted in probe activation at the infection sites in an MN-dependent manner.

"We have come up with a new way to detect staph bacteria that takes less time than current diagnostic approaches," said senior author Dr. James McNamara, assistant professor of internal medicine at the University of Iowa. "It builds on technology that has been around a long time, but with an important twist that allows our probe to be more specific and to last longer. If the probe gets cleaved by serum nucleases, then our probe would be lit up all over the bloodstream. But since it is split only by staph nucleases, then we can pinpoint where the staph bacteria are active."

The investigators applied for US patent to protect use of the molecule in the fall of 2012, and plan to refine the probe so it can be detected deeper in the body and with catheter infections.

A paper describing the novel probe for staph infections was published in the February 2, 2014, online edition of the journal Nature Medicine.

Related Links:

University of Iowa



Gold Member
Respiratory Syncytial Virus Test
OSOM® RSV Test
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Laboratory Software
ArtelWare
Sperm Quality Analyis Kit
QwikCheck Beads Precision and Linearity Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Neuron-derived extracellular vesicles carry many biomarker candidates for Alzheimer’s (S Chinnathambi et al., Brain Network Disorders (2025). doi.org/10.1016/j.bnd.2024.12.006)

Neuron-Derived Extracellular Vesicles Could Improve Alzheimer’s Diagnosis

Alzheimer’s disease is becoming increasingly common as global populations age, yet effective treatments for advanced stages remain limited. Early detection is therefore critical, but current diagnostic... Read more

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more

Pathology

view channel
Image: The AI tool advances precision diagnostics by linking genetic mutations directly to disease types (Photo courtesy of Shutterstock)

AI Tool Simultaneously Identifies Genetic Mutations and Disease Type

Interpreting genetic test results remains a major challenge in modern medicine, particularly for rare and complex diseases. While existing tools can indicate whether a genetic mutation is harmful, they... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.