Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Molecular Probe Lights Up Staph Infections

By LabMedica International staff writers
Posted on 17 Feb 2014
A novel chemical probe comprising a self-quenching fluorescently labeled oligonucleotide allows for the rapid, noninvasive detection of staphylococcal (staph) infections.

To more easily identify sites of staph infection investigators at the University of Iowa (Iowa City, USA) created a novel molecular probe. The probe comprised a pair of deoxythymidines flanked by several 2′-O-methyl–modified nucleotides. Various chemical modifications rendered the molecule resistant to mammalian serum nucleases while leaving it susceptible to the action of staphylococcal micrococcal nuclease (MN). A fluorophore was attached to one end of the probe while a molecule that quenched the fluorescence was attached to the other. The presence of the quencher prevented emission of any fluorescent light.

The action of Staphylococcus aureus MN, an endo-exonuclease that digests single-stranded and double-stranded DNA and RNA, digested the probe and liberated the fluorophore from the suppressing effect of the quencher. As the probe was susceptible to digestion only by staph MN, the appearance of fluorescence pinpointed the site of bacterial infection.

The probe's fluorescence was activated in culture supernatants of S. aureus but not in culture supernatants of several other pathogenic bacteria. Systemic administration of this probe to mice bearing S. aureus muscle infections resulted in probe activation at the infection sites in an MN-dependent manner.

"We have come up with a new way to detect staph bacteria that takes less time than current diagnostic approaches," said senior author Dr. James McNamara, assistant professor of internal medicine at the University of Iowa. "It builds on technology that has been around a long time, but with an important twist that allows our probe to be more specific and to last longer. If the probe gets cleaved by serum nucleases, then our probe would be lit up all over the bloodstream. But since it is split only by staph nucleases, then we can pinpoint where the staph bacteria are active."

The investigators applied for US patent to protect use of the molecule in the fall of 2012, and plan to refine the probe so it can be detected deeper in the body and with catheter infections.

A paper describing the novel probe for staph infections was published in the February 2, 2014, online edition of the journal Nature Medicine.

Related Links:

University of Iowa



Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.