We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Rapid Colorimetric Assay Quantifies Urease Activity

By LabMedica International staff writers
Posted on 13 Nov 2013
Print article
Image: Synergy MX Monochromator-Based Multi-Mode Microplate Reader (Photo courtesy of BioTek).
Image: Synergy MX Monochromator-Based Multi-Mode Microplate Reader (Photo courtesy of BioTek).
A novel high throughput colorimetric urease activity assay was compared to the Nessler method and the new method employs phenol red to determine the urease activity.

This method is rapid, sensitive, easy, cost-effective, does not use any toxic chemical reagents, significantly reduces sample-processing time, and allows real-time investigations.

Scientists at the University of Houston (TX, USA) determine the urease activity of seven urease-positive (+) and two urease-negative (−) bacteria from diverse environmental sources. All cultures were incubated for 24 hours at 150 rpm (INNOVA 44, New Brunswick Scientific Co.; Enfield, CT, USA) in their specific growth conditions. The bacterial cells were then adjusted to an optical density of 0.5 at 600 nm with a plate reader.

Suspensions for all microorganisms were inoculated into Stuart's broth in triplicates into flat-bottom 96-well plate and read at 430 nm and 560 nm every 30 minutes for 24 hours with the Synergy MX Microtiter plate reader (BioTek; Winooski, VT, USA). To quantify the urease activity with this new method, the reaction rates were calculated from the absorbance data and they were correlated with the urease activity based on the standard curve of the urease enzyme. The results of this method were compared to the standard Nessler method.

The two methods showed related but not identical values. The Nessler method requires sample collection and preparation steps before measurement of the enzyme activity, but the new method does not, which could explain the slightly different results. In addition, it was found that filtration affects the enzymatic activity, which might be another possible cause for the observed variation between the two results.

The authors concluded that the new method is high throughput, it has decreased analysis processing, and provides a shorter assay work-up. These features make this method a good alternative to the Nessler method for rapid quantification and screening of urease activity. The study was published on October 5, 2103, in the Journal of Microbiological Methods.

Related Links:

University of Houston
New Brunswick Scientific Co. 
BioTek 


Gold Member
Chagas Disease Test
CHAGAS Cassette
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Nutating Mixer
Enduro MiniMix
New
Alpha-Fetoprotein Reagent
AFP Reagent Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Pathology

view channel
Image: The ready-to-use DUB enzyme assay kits accelerate routine DUB activity assays without compromising data quality (Photo courtesy of Adobe Stock)

Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation

Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.