We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients

By LabMedica International staff writers
Posted on 07 Apr 2025

Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. More...

However, over half of non-Hodgkin lymphoma (NHL) patients who fail to respond to conventional treatments also experience relapse or disease progression within six months after undergoing CAR T therapy. In response, a new tool using machine learning has been developed to predict how well an NHL patient might respond to CAR T-cell therapy prior to starting the treatment.

Called InflaMix (Inflammation Mixture Model), this innovative tool was developed by researchers at City of Hope (Duarte, CA, USA) to evaluate inflammation, which is considered a potential cause of CAR T failure, by testing for various blood biomarkers in 149 patients with NHL. Using machine learning, a form of artificial intelligence that analyzes data through algorithms to identify patterns and draw conclusions, the model was able to identify an inflammatory biomarker through a set of blood tests that are not typically used in standard clinical practice. By examining the inflammatory signature identified by InflaMix, the researchers found a significant association with an increased risk of CAR T treatment failure, including a higher risk of death or relapse. Notably, InflaMix is an unsupervised model, meaning it was trained without prior knowledge of clinical outcomes.

The research team noted that the machine learning model is highly adaptable, showing good performance even when using just six commonly available blood tests—tests that are typically evaluated for lymphoma patients—to assess InflaMix's functionality with less data. This is an important feature because it suggests that the test could be accessible to a broad range of lymphoma patients. To validate their initial findings, the researchers studied three independent cohorts, comprising 688 NHL patients with diverse clinical characteristics and disease subtypes who had received different CAR T products. Moving forward, the team plans to explore whether the inflammation identified by InflaMix directly impacts CAR T-cell function and to investigate the underlying sources of this inflammation.

“These studies demonstrate that by using machine learning and blood tests, we could develop a highly reliable tool that can help predict who will respond well to CAR T cell therapy,” said Marcel van den Brink, M.D., Ph.D., president of City of Hope Los Angeles and City of Hope National Medical Center, and a senior author of the paper published in Nature Medicine. “InflaMix could be used to reliably identify patients who are about to be treated with CAR T and are at high risk for the treatment not working. By identifying these patients, doctors may be able to design new clinical trials that can boost the effectiveness of CAR T with additional treatment strategies.”

Related Links:
City of Hope


New
Gold Member
Ketosis and DKA Test
D-3-Hydroxybutyrate (Ranbut) Assay
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
Gram-Negative Blood Culture Assay
LIAISON PLEX Gram-Negative Blood Culture Assay
ESR Analyzer
TEST1 2.0
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Research has linked platelet aggregation in midlife blood samples to early brain markers of Alzheimer’s (Photo courtesy of Shutterstock)

Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk

Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more

Microbiology

view channel
Image: Development of targeted therapeutics and diagnostics for extrapulmonary tuberculosis at University Hospital Cologne (Photo courtesy of Michael Wodak/Uniklinik Köln)

Blood-Based Molecular Signatures to Enable Rapid EPTB Diagnosis

Extrapulmonary tuberculosis (EPTB) remains difficult to diagnose and treat because it spreads beyond the lungs and lacks easily accessible biomarkers. Despite TB infecting 10 million people yearly, the... Read more

Pathology

view channel
Image: The AI tool combines patient data and images to detect melanoma (Photo courtesy of Professor Gwangill Jeon/Incheon National University)

AI Tool to Transform Skin Cancer Detection with Near-Perfect Accuracy

Melanoma continues to be one of the most difficult skin cancers to diagnose because it often resembles harmless moles or benign lesions. Traditional AI tools depend heavily on dermoscopic images alone,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.