We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




AI Tool Predicts Cancer Patients’ Response to Immunotherapy

By LabMedica International staff writers
Posted on 05 Jun 2024

Immune checkpoint inhibitors are a form of immunotherapy drug that enables immune cells to target and destroy cancer cells. More...

At present, the Food and Drug Administration has approved two predictive biomarkers for identifying patients who might benefit from immune checkpoint inhibitors. The first biomarker is tumor mutational burden, which measures the number of mutations in the DNA of cancer cells. The second biomarker is PD-L1, a protein found on tumor cells that inhibits the immune response and is targeted by some immune checkpoint inhibitors. However, these biomarkers are not always reliable in predicting a patient's response to immune checkpoint inhibitors. Recent machine-learning models utilizing molecular sequencing data have demonstrated potential in predicting responses, but this data is costly and not routinely collected. Researchers have now created an artificial intelligence (AI) tool that uses standard clinical data, such as results from a basic blood test, to predict if a patient’s cancer will respond to immune checkpoint inhibitors.

The machine-learning model, named Logistic Regression-Based Immunotherapy-Response Score (LORIS), was developed by scientists at the National Cancer Institute (Bethesda, MD, USA). It aims to assist doctors in determining the efficacy of immunotherapy drugs for a patient's cancer treatment. The AI model bases its predictions on five clinical features routinely collected from patients: age, cancer type, history of systemic therapy, blood albumin level, and blood neutrophil-to-lymphocyte ratio, an indicator of inflammation. The model also considers tumor mutational burden, evaluated through sequencing panels.

This model was built and validated using data from multiple independent datasets comprising 2,881 patients treated with immune checkpoint inhibitors across 18 types of solid tumors. The model accurately predicted both a patient’s likelihood of responding to an immune checkpoint inhibitor and their overall survival time, including the period before disease recurrence. Remarkably, the model also identified patients with low tumor mutational burden who could still benefit from immunotherapy. The findings of the study were published in Nature Cancer on June 3, 2024. The researchers emphasized the need for larger prospective studies to further validate the AI model in clinical settings and have made it publicly accessible. 

Related Links:
National Cancer Institute
LORIS


Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
HBV DNA Test
GENERIC HBV VIRAL LOAD VER 2.0
Silver Member
PCR Plates
Diamond Shell PCR Plates
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The new analysis of blood samples links specific protein patterns to five- and ten-year mortality risk (Photo courtesy of Adobe Stock)

Blood Protein Profiles Predict Mortality Risk for Earlier Medical Intervention

Elevated levels of specific proteins in the blood can signal increased risk of mortality, according to new evidence showing that five proteins involved in cancer, inflammation, and cell regulation strongly... Read more

Hematology

view channel
Image: Research has linked platelet aggregation in midlife blood samples to early brain markers of Alzheimer’s (Photo courtesy of Shutterstock)

Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk

Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more

Microbiology

view channel
Image: The SMART-ID Assay delivers broad pathogen detection without the need for culture (Photo courtesy of Scanogen)

Rapid Assay Identifies Bloodstream Infection Pathogens Directly from Patient Samples

Bloodstream infections in sepsis progress quickly and demand rapid, precise diagnosis. Current blood-culture methods often take one to five days to identify the pathogen, leaving clinicians to treat blindly... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.