We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




AI Tool Predicts Cancer Patients’ Response to Immunotherapy

By LabMedica International staff writers
Posted on 05 Jun 2024

Immune checkpoint inhibitors are a form of immunotherapy drug that enables immune cells to target and destroy cancer cells. More...

At present, the Food and Drug Administration has approved two predictive biomarkers for identifying patients who might benefit from immune checkpoint inhibitors. The first biomarker is tumor mutational burden, which measures the number of mutations in the DNA of cancer cells. The second biomarker is PD-L1, a protein found on tumor cells that inhibits the immune response and is targeted by some immune checkpoint inhibitors. However, these biomarkers are not always reliable in predicting a patient's response to immune checkpoint inhibitors. Recent machine-learning models utilizing molecular sequencing data have demonstrated potential in predicting responses, but this data is costly and not routinely collected. Researchers have now created an artificial intelligence (AI) tool that uses standard clinical data, such as results from a basic blood test, to predict if a patient’s cancer will respond to immune checkpoint inhibitors.

The machine-learning model, named Logistic Regression-Based Immunotherapy-Response Score (LORIS), was developed by scientists at the National Cancer Institute (Bethesda, MD, USA). It aims to assist doctors in determining the efficacy of immunotherapy drugs for a patient's cancer treatment. The AI model bases its predictions on five clinical features routinely collected from patients: age, cancer type, history of systemic therapy, blood albumin level, and blood neutrophil-to-lymphocyte ratio, an indicator of inflammation. The model also considers tumor mutational burden, evaluated through sequencing panels.

This model was built and validated using data from multiple independent datasets comprising 2,881 patients treated with immune checkpoint inhibitors across 18 types of solid tumors. The model accurately predicted both a patient’s likelihood of responding to an immune checkpoint inhibitor and their overall survival time, including the period before disease recurrence. Remarkably, the model also identified patients with low tumor mutational burden who could still benefit from immunotherapy. The findings of the study were published in Nature Cancer on June 3, 2024. The researchers emphasized the need for larger prospective studies to further validate the AI model in clinical settings and have made it publicly accessible. 

Related Links:
National Cancer Institute
LORIS


New
Gold Member
Collection and Transport System
PurSafe Plus®
Portable Electronic Pipette
Mini 96
Gel Cards
DG Gel Cards
New
Gold Member
Automatic CLIA Analyzer
Shine i9000
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The genomic test measures eight gene activities in a melanoma tumor and combines this data with patient factors like age and tumor thickness (Photo courtesy of 123RF)

Genomic Test Could Reduce Lymph Node Biopsy Surgery in Melanoma Patients

Accurately determining whether melanoma has spread to the lymph nodes is crucial for guiding treatment decisions, yet the standard procedure—sentinel lymph node biopsy—remains invasive, costly, and unnecessary... Read more

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.