We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App





Non-Invasive COVID-19 Test Identifies `Breath Signatures` to Provide Almost Instant Results

By LabMedica International staff writers
Posted on 29 Oct 2020
Initial findings from a new study have shown how COVID-19 can be detected via a non-invasive breath test by identifying candidate biomarkers, providing almost instant results.

The new study was conducted by Loughborough University (Leicestershire, UK) which is part of a consortium’s research team that has been able to identify candidate biomarkers present in the breath of someone affected by COVID-19. More...
Utilizing technologies which were developed earlier, the team has demonstrated how these markers or ‘breath signatures’ can be used to rapidly distinguish COVID-19 from other respiratory conditions at point of need, such as an emergency department, a workplace or a care setting, with no laboratory support. The IMSPEX Group which is also part of the consortium will be working alongside researchers to help develop and scale such technology. Its BreathSpec device has been a key tool used by researchers in the analysis of volatile organic compounds (VOCs) in human breath.

For the feasibility study, the researchers recruited 98 patients, out of whom 31 had COVID-19. Other diagnoses included asthma, exacerbation of asthma and COPD, viral pneumonia, other respiratory tract infections, and cardiac conditions. In order to identify and diagnose COVID-19 from the samples, the team used Gas Chromatography (GC) - a procedure used for separating and analyzing compounds that can be vaporized without decomposition - and Ion Mobility Spectrometry (IMS) – an analytical technique used to separate and identify ionized molecules in the gas phase. The study participants gave a single breath-sample for the analysis of VOCs by GC-IMS. The analysis identified aldehydes (ethanal, octanal), ketones (acetone, butanone), and methanol that discriminated COVID-19 from other conditions.

“We are hugely encouraged by these findings. Employing tried and tested techniques used during the TOXI-Triage project, suggests that COVID-19 may be rapidly distinguished from other respiratory conditions,” said Paul Thomas, Professor of Analytical Science from Loughborough’s Department of Chemistry. “To develop this technique further larger studies are required, together with complementary GC-MS studies, to build on the data collected so far. If shown to be reliable, it offers the possibility for rapid identification or exclusion of COVID-19 in emergency departments or primary care that will protect healthcare staff, improve the management of patients and reduce the spread of COVID-19.”

Related Links:
Loughborough University


Gold Member
SARS-CoV-2 Reactive & Non-Reactive Controls
Qnostics SARS-CoV-2 Typing
Collection and Transport System
PurSafe Plus®
8-Channel Pipette
SAPPHIRE 20–300 µL
Gram-Negative Blood Culture Assay
LIAISON PLEX Gram-Negative Blood Culture Assay
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The genomic test measures eight gene activities in a melanoma tumor and combines this data with patient factors like age and tumor thickness (Photo courtesy of 123RF)

Genomic Test Could Reduce Lymph Node Biopsy Surgery in Melanoma Patients

Accurately determining whether melanoma has spread to the lymph nodes is crucial for guiding treatment decisions, yet the standard procedure—sentinel lymph node biopsy—remains invasive, costly, and unnecessary... Read more

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.