We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Biosensing Technology Breakthrough Paves Way for New Methods of Early Disease Detection

By LabMedica International staff writers
Posted on 11 Dec 2024

Nanopores are tiny openings that can detect individual molecules as they pass through, making them ideal for analyzing biomolecules like DNA and proteins. More...

However, detecting proteins at extremely low concentrations—such as those found in the early stages of diseases—has been challenging. Now, a new breakthrough in nanotechnology for biomolecule detection and analysis could open doors to more effective early disease detection methods.

In a study conducted at SMU Lyle (Dallas, TX, USA) and featured on the cover of Analytical Chemistry, researchers combined octahedral DNA origami structures with solid-state nanopores to enhance the detection of proteins, particularly those present in low concentrations. The researchers found that integrating DNA origami's precision with the strength of solid-state nanopores results in a "hybrid nanopore" system, offering more accurate and sensitive protein detection. DNA origami is a technique in which DNA strands are folded into specific shapes, such as an octahedron, to improve the nanopore’s capacity to capture and detect proteins. In their study, the researchers used holo human serum transferrin as a model protein, demonstrating that this hybrid nanopore system outperformed traditional nanopores in both sensitivity and detection accuracy.

Many diseases, including cancer and neurodegenerative disorders, are marked by proteins present in very small quantities, making them difficult to detect in the early stages. The hybrid nanopore's ability to detect these low-abundance proteins could lead to earlier diagnoses and more effective treatment outcomes. Moving forward, the research team plans to refine the DNA origami structure and nanopore configurations to further improve sensitivity and expand the range of detectable biomolecules. This innovative approach could revolutionize fields like drug discovery, disease diagnostics, and fundamental biological research.

“This work could pave the way for developing advanced biosensing technologies, with potential applications in biomedical research and diagnostic tools – especially for diseases marked by low-abundance protein biomarkers,” said SMU Lyle mechanical engineering graduate student Kamruzzaman Joty.


Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Serological Pipet Controller
PIPETBOY GENIUS
New
Respiratory Syncytial Virus Test
OSOM® RSV Test
New
Whole Blood Control
Lyphochek Whole Blood Control
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: The tip optofluidic immunoassay platform enables rapid, multiplexed antibody profiling using only 1 μL of fingertip blood (Photo courtesy of hLife, DOI:10.1016/j.hlife.2025.04.005)

POC Diagnostic Platform Performs Immune Analysis Using One Drop of Fingertip Blood

As new COVID-19 variants continue to emerge and individuals accumulate complex histories of vaccination and infection, there is an urgent need for diagnostic tools that can quickly and accurately assess... Read more

Pathology

view channel
Image: Microscopy image of invasive breast cancer cells degrading their underlying extracellular matrix (Photo courtesy of University of Turku)

Visualization Tool Illuminates Breast Cancer Cell Migration to Suggest New Treatment Avenues

Patients with breast cancer who progress from ductal carcinoma in situ (DCIS) to invasive ductal carcinoma (IDC) face a significantly worse prognosis, as metastatic disease remains incurable.... Read more

Technology

view channel
Image: The machine learning-based method delivers near-perfect survival estimates for PAC patients (Photo courtesy of Shutterstock)

AI Method Predicts Overall Survival Rate of Prostate Cancer Patients

Prostate adenocarcinoma (PAC) accounts for 99% of prostate cancer diagnoses and is the second most common cancer in men globally after skin cancer. With more than 3.3 million men in the United States diagnosed... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.