We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




HOMA2-B Assessed for Type 1 Diabetes Risk

By LabMedica International staff writers
Posted on 26 Jan 2022
Methods to identify individuals at highest risk for type 1 diabetes are essential for the successful implementation of disease-modifying interventions. More...
Simple metabolic measures are needed to help stratify autoantibody-positive (Aab+) individuals who are at risk of developing type 1 diabetes.

The Homeostasis Model Assessment (HOMA) estimates steady state beta cell function (%B) and insulin sensitivity (%S), as percentages of a normal reference population. These measures correspond well, but are not necessarily equivalent, to non-steady state estimates of beta cell function and insulin sensitivity derived from stimulatory models such as the hyperinsulinemic clamp, the hyperglycemic clamp, the intravenous glucose tolerance test (acute insulin response, minimal model), and the oral glucose tolerance test.

A team of clinical scientists at the Indiana University School of Medicine (Indianapolis, IN, USA) enrolled in the TrialNet Pathway to Prevention study and measured baseline HOMA2-B values from single- autoantibody-positive (Aab+) 2,652 individuals (mean age, 21.1 ± 14.0 years) and multiple-Aab+ 3, 794 individuals (mean age, 14.5 ± 11.2 years). Cox proportional hazard models were used to determine associations between HOMA2-B tertiles and time to progression to type 1 diabetes, with adjustments for age, sex, HLA status and BMI z score. Receiver operating characteristic (ROC) analysis was used to test the association of HOMA2-B with type 1 diabetes development in 1, 2, 5 and 10 years.

The investigators reported that at study entry, HOMA2-B values were significantly higher in single- compared with multiple-Aab+ participants (91.1 ± 44.5 versus 83.9 ± 38.9). Single- and multiple-Aab+ individuals in the lowest HOMA2-B tertile had a higher risk and faster rate of progression to type 1 diabetes. For progression to type 1 diabetes within 1 year, area under the ROC curve (AUC-ROC) was 0.685, 0.666 and 0.680 for all Aab+, single-Aab+ and multiple-Aab+ individuals, respectively. When correlation between HOMA2-B and type 1 diabetes risk was assessed in combination with additional factors known to influence type 1 diabetes progression (insulin sensitivity, age and HLA status), AUC-ROC was highest for the single-Aab+ group’s risk of progression at 2 years (AUC-ROC 0.723).

The authors concluded that the data suggest that HOMA2-B may have utility as a single-time-point measurement to stratify risk of type 1 diabetes development in Aab+ individuals. The study was published in the January 2022 issue of the journal Diabetologia.

Related Links:
Indiana University School of Medicine


New
Gold Member
Hematology Analyzer
Medonic M32B
Serological Pipet Controller
PIPETBOY GENIUS
New
Autoimmune Disease Diagnostic
Chorus ds-DNA-G
New
Capillary Blood Collection Tube
IMPROMINI M3
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Molecular Diagnostics

view channel
Image: Pancreas cells (left) showing early stages of malignant cancer in brown and same cells stained blue (right) indicate they are Integrin β3 (ITGB3) positive (Photo courtesy of UC San Diego Health Sciences)

Gene Signature Could Serve as Early Warning System for Aggressive Pancreatic Cancer

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and lethal forms of cancer, with early detection remaining a major challenge. Precancerous cells must overcome significant stress and... Read more

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: The 3D paper-based analytical device has shown high clinical accuracy for adult-onset immunodeficiency (Photo courtesy of National Taiwan University)

Paper-Based Device Accurately Detects Immune Defects in 10 Minutes

Patients with hidden immune defects are especially vulnerable to severe and persistent infections, often due to autoantibodies that block interferon-gamma (IFN-γ), a key molecule in immune defense.... Read more

Microbiology

view channel
Image: The groundbreaking salmonella antimicrobial resistance prediction platform has demonstrated 95% accuracy (Photo courtesy of Yujie You et al., DOI: 10.1016/j.eng.2025.01.013)

New Platform Leverages AI and Quantum Computing to Predict Salmonella Antimicrobial Resistance

Antimicrobial-resistant Salmonella strains are a growing public health concern due to the overuse of antimicrobials and the rise of genetic mutations. Accurate prediction of resistance is crucial for effective... Read more

Technology

view channel
Image: The Check4 gene-detection platform (Photo courtesy of IdentifySensors)

Electronic Biosensors Used to Detect Pathogens Can Rapidly Detect Cancer Cells

A major challenge in healthcare is the early and affordable detection of serious diseases such as cancer. Early diagnosis remains difficult due to the complexity of identifying specific genetic markers... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.