We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Novel Biomarker Candidate for Amyotrophic Lateral Sclerosis Explored

By LabMedica International staff writers
Posted on 23 Dec 2020
Print article
Image: Schematic illustration of the immuno‐infrared sensor. Using oligoclonal capture antibodies, all TDP‐43 isoforms are extracted out of CSF (Photo courtesy of Ruhr University Bochum).
Image: Schematic illustration of the immuno‐infrared sensor. Using oligoclonal capture antibodies, all TDP‐43 isoforms are extracted out of CSF (Photo courtesy of Ruhr University Bochum).
Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease causing a rapid loss of motor function, which usually results in a serious condition with early death within a few years. So far, early and precise diagnosis of the disease has been difficult.

To date, one of the key challenges in ALS diagnostics is to exclude other mimicking diseases, which are assessed based on clinical and electrophysiological parameters, while disease‐specific diagnostic and prognostic biomarkers are still lacking. In ALS, the TDP-43 protein in particular plays a pivotal role. It forms small inclusions in nerve cells. TDP-43 inclusions appear to have crucial pathomechanistic significance and are the neuropathological markers in sporadic and many genetic ALS cases.

A multidisciplinary team of scientists working with the Ruhr University Bochum (Bochum, Germany) analyzed the secondary structure distribution of TDP‐43 in cerebrospinal fluid of 36 ALS patients compared to 30 Parkinson´s disease patients (PD) and 34 further controls (Ctrl) using the immuno‐infrared sensor technology. The immuno‐infrared sensor is a universal technology that provides a relative measure directly reflecting the secondary structure distribution of a biomarker in a biofluid. The samples are analyzed in a flow‐through system.

The team succeeded in securing a diagnosis of ALS based on the altered structure of the protein TDP-43. In the process, they showed that the proteins fold from predominantly disordered and helical structures to so-called ß-sheets. These shapes promote damage assemblies and deposits of the protein in nerve cells. In the analysis, 36 ALS patients were distinguished from 30 Parkinson's patients by means of the TDP-43 signal with a sensitivity of 89% and a specificity of 77%. In addition, a control group with neurologically inconspicuous patients was differentiated with a sensitivity of 89% and a specificity of 83%. By analyzing TDP-43, the investigators were able to exclude other diseases that affect motor function, such as Parkinson's disease.

Léon Beyer, MSc, one of the lead authors of the study and PhD student at the Prodi Biospectroscopy Department, said, “This achievement may provide new insight into the mechanisms of the disease. Compared to other methods that reflect concentrations of certain proteins, our infrared sensor technology gives insights into molecular events and may therefore become a crucial tool in the future for diagnosing and for developing clinical therapies. First and foremost, however, it will contribute greatly to a more precise understanding of diseases.”

The authors concluded that their findings demonstrate that TDP‐43 misfolding measured by the immuno‐infrared sensor technology has the potential to serve as a biomarker candidate for ALS. The study was published on December 3, 2020 in the journal Annals of Clinical and Translational Neurology.

Related Links:
Ruhr University Bochum

Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Luteinizing Hormone Assay
DRG LH-Serum ELISA Kit
New
Cytomegalovirus Test
NovaLisa Cytomegalovirus (CMV) IgG Test

Print article

Channels

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.