We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Spider Silk Microparticle System Engineered for Anticancer Drugs

By LabMedica International staff writers
Posted on 25 Jun 2018
Print article
Image: Immune cells that ingested spider silk nanoparticles (in green). The endosomes – the part of the cell in which the nanoparticles release the vaccine – appear in blue (Photo courtesy of Bourquin Laboratory, University of Geneva).
Image: Immune cells that ingested spider silk nanoparticles (in green). The endosomes – the part of the cell in which the nanoparticles release the vaccine – appear in blue (Photo courtesy of Bourquin Laboratory, University of Geneva).
Engineered spider silk microparticles underlie a novel transport system for the delivery of immunotherapeutic drugs to critical stimulatory sites in the immune system.

The generation of strong T-cell immunity is one of the main challenges for the development of successful vaccines against cancer and major infectious diseases. To accomplish this task vaccine peptides must be protected from rapid degradation in the body and should be delivered to the center of the lymph node cells, thereby considerably increasing T-lymphocyte immune responses.

To fulfill these criteria, investigators at the University of Geneva (Switzerland) and collaborators from several German research institutes engineered spider silk microparticles as the basis for a delivery system for peptide-based vaccination. Spider silk is a lightweight, biocompatible, non-toxic material that is highly resistant to degradation from light and heat. To prepare the microparticles, the recombinant spider silk protein eADF4(C16) was fused to the antigenic peptide from ovalbumin, either without linker or with a cathepsin cleavable peptide linker.

The investigators reported in the July 2018 issue of the journal Biomaterials that particles prepared from the hybrid proteins were taken up by dendritic cells, which are essential for T-cell priming, and successfully activated cytotoxic T-cells, without signs of immunotoxicity or unspecific immunostimulatory activity. Upon subcutaneous injection in mice, the particles were taken up by dendritic cells and accumulated in the lymph nodes, where immune responses are generated.

"To develop immunotherapeutic drugs effective against cancer, it is essential to generate a significant response of T-lymphocytes, said senior author Dr. Carole Bourquin, professor of pharmaceutical sciences at the University of Geneva.

"As the current vaccines have only limited action on T-cells, it is crucial to develop other vaccination procedures to overcome this issue. Our study has proved the validity of our technique. We have demonstrated the effectiveness of a new vaccination strategy that is extremely stable, easy to manufacture and easily customizable."

Related Links:
University of Geneva

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.