We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App

Electrochemical Device Identifies People at Higher Risk for Osteoporosis Using Single Blood Drop

By LabMedica International staff writers
Posted on 15 Aug 2023
Print article
Image: A new electrochemical device can quickly and inexpensively identify people at greatest risk for osteoporosis (Photo courtesy of ACS Central Science, 2023)
Image: A new electrochemical device can quickly and inexpensively identify people at greatest risk for osteoporosis (Photo courtesy of ACS Central Science, 2023)

With the global increase in life expectancy, the incidence of age-related conditions like osteoporosis is increasing. Osteoporosis, affecting around 200 million individuals worldwide, has a higher incidence among women. The multifaceted nature of osteoporosis, influenced by both genetic and environmental factors, increases the risk of bone fractures. Early intervention is vital to reduce the consequences of osteoporosis, yet current diagnostic techniques fall short of enabling early detection of this ailment. Now, researchers have developed a biosensor with the potential to identify those at the highest risk of osteoporosis, using less than a drop of blood.

Dual-energy X-ray absorptiometry, the prevalent method to assess changes in bone mineral density, is not sensitive enough to detect density loss until considerable damage has already been done. A number of genomic studies have found specific genetic variations, referred to as single nucleotide polymorphisms (SNPs), which correlate with a higher osteoporosis risk. Building upon these findings, a research team from Universitat Rovira i Virgili (Tarragona, Spain) set out to create a portable electrochemical device to rapidly detect five such SNPs in finger-prick blood samples, enabling early diagnosis of osteoporosis.

Central to the device is an electrode array housing DNA fragments corresponding to each SNP. The application of lysed whole blood to the array facilitates the binding of any matching DNA sequences with the SNPs. Amplification takes place with the incorporation of ferrocene-labeled recombinase polymerase, facilitating electrochemical detection. This innovative platform enabled the identification of osteoporosis-associated SNPs in 15 human blood samples, with validation successfully done against alternative methods. Elimination of the need to extract DNA from the blood streamlines the analysis, making it rapid (approximately 15 minutes) and cost-effective (less than $0.5 per SNP).

In addition to its rapid results and affordability, the device offers portability and ready accessibility, making it ideally suited for point-of-care scenarios instead of being confined to centralized laboratories. The technology's versatility extends its ability to be adapted for the detection of other SNPs, as demonstrated previously by the researchers in identifying drug resistance in Tuberculosis mycobacterium from sputum and predicting cardiomyopathy risk from blood samples. Although the device does not directly diagnose osteoporosis, it has the potential to assist physicians in identifying individuals who require closer monitoring for the condition.

Related Links:
Universitat Rovira i Virgili

Platinum Member
Flu SARS-CoV-2 Combo Test
OSOM® Flu SARS-CoV-2 Combo Test
Magnetic Bead Separation Modules
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Automatic Nucleic Acid Extractor
GeneRotex 24

Print article


Clinical Chemistry

view channel
Image: The new ADLM guidance will help healthcare professionals navigate respiratory virus testing in a post-COVID world (Photo courtesy of 123RF)

New ADLM Guidance Provides Expert Recommendations on Clinical Testing For Respiratory Viral Infections

Respiratory tract infections, predominantly caused by viral pathogens, are a common reason for healthcare visits. Accurate and swift diagnosis of these infections is essential for optimal patient management.... Read more

Molecular Diagnostics

view channel
Image: The HelioLiver Dx test has met the coprimary and secondary study endpoints in the CLiMB trial (Photo courtesy of Helio Genomics)

Blood-Based Test Outperforms Ultrasound in Early Liver Cancer Detection

Patients with liver cirrhosis and chronic hepatitis B are at a higher risk for developing hepatocellular carcinoma (HCC), the most prevalent type of liver cancer. The American Association for the Study... Read more


view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more


view channel
Image: The POC PCR test shortens time for STI test results (Photo courtesy of Visby Medical)

POC STI Test Shortens Time from ED Arrival to Test Results

In a 2024 sexually transmitted infections (STIs) surveillance report by the World Health Organization (WHO), over 2.5 million cases were recorded, alongside a rise in the inappropriate use of antibiotics... Read more


view channel
Image: For 46 years, Roche and Hitachi have collaborated to deliver innovative diagnostic solutions (Photo courtesy of Roche)

Roche and Hitachi High-Tech Extend 46-Year Partnership for Breakthroughs in Diagnostic Testing

Roche (Basel, Switzerland) and Hitachi High-Tech (Tokyo, Japan) have renewed their collaboration agreement, committing to a further 10 years of partnership. This extension brings together their long-standing... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.