We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Smart Palm-size Optofluidic Hematology Analyzer Enables POCT of Patients’ Blood Cells

By LabMedica International staff writers
Posted on 17 Jan 2024

Variations in blood cell concentration can be indicative of several health conditions, including infections, inflammatory diseases, malignant blood disorders, and AIDS (Acquired Immune Deficiency Syndrome). More...

Detecting these variations is crucial for diagnosing, treating, and managing these diseases. Traditional methods for measuring blood cell concentration, like using a hemocytometer, typically require an optical microscope. Alternatively, flow cytometers offer a more efficient method for sorting and counting blood cells in fluids, but they are often large and complex, weighing between 9-30 kg, thus limiting their use to laboratory and hospital settings. This restricts the availability of point-of-care testing (POCT) and can delay treatment for patients. Now, a proposed portable smart blood cell analyzer could help overcome the limitations of conventional methods for blood cell concentration detection.

Developed by the Harbin Institute of Technology (HIT, Heilongjiang, China), this innovative analyzer integrates a miniature fluorescence microscope, typically used in neuroscience and behavioral research, with a microfluidic platform. This design significantly reduces the analyzer's size and weight, resulting in a device that measures 35 × 30 × 80 mm and weighs only 39 g, making it substantially lighter than conventional flow cytometers. The analyzer combines image processing with leukocyte counting algorithms to enhance leukocyte information and accurately determine their concentration.

The effectiveness of the proposed analyzer was validated by comparing its leukocyte concentration measurements with those of a standard hemocytometer using Passing-Bablok analysis, achieving a correlation coefficient of 0.979. A Bland-Altman analysis further confirmed the analyzer’s reliability, establishing a 95% limit of agreement ranging from -0.93×10³ to 0.94×10³ cells/μL. The analyzer's error rate in calculating leukocyte concentration was found to be less than 10%, meeting the accuracy standards set by both the UK National External Quality Assessment Service (NEQAS) and the Clinical Laboratory Improvement Amendments of 1988 (CLIA-88). The development of this palm-size optofluidic hematology analyzer is expected to facilitate the POCT of blood cells outside traditional hospital or laboratory settings, thus enhancing medical diagnosis in remote or underserved areas.

Related Links:
HIT


Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Gold Member
Troponin T QC
Troponin T Quality Control
New
Droplet Digital PCR System
QX600 AutoDG
New
Enterovirus Test
Quanty Enterovirus System
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: New biomarkers could someday make it easy to spot Parkinson’s disease in a patient’s blood sample (Photo courtesy of Shutterstock)

Unique Blood-Based Genetic Signature Can Diagnose Parkinson’s Disease

Parkinson's disease is primarily recognized for its impact on the central nervous system. Recent scientific progress has shifted focus to understanding the involvement of the immune system in the onset... Read more

Immunology

view channel
Image: Custom hardware and software for the real-time detection of immune cell biophysical signatures in NICU (Photo courtesy of Pediatric Research, DOI:10.1038/s41390-025-03952-y)

First-Of-Its-Kind Device Profiles Newborns' Immune Function Using Single Blood Drop

Premature infants are highly susceptible to severe and life-threatening conditions, such as sepsis and necrotizing enterocolitis (NEC). Newborn sepsis, which is a bloodstream infection occurring in the... Read more

Pathology

view channel
Image: The innovative doublet configuration and annular illumination overcome traditional metalens limitations (Photo courtesy of Tao Li and Jiacheng Sun/Nanjing University)

High-Resolution Metalens Doublet Microscope to Enhance Diagnostic Capabilities

Metalenses mark a groundbreaking leap in optical technology. Unlike traditional microscope objectives that rely on curved glass surfaces, metalenses utilize nanoscale structures to manipulate light at... Read more

Technology

view channel
Image: Concept of biosensor integrated into hygiene pads enabling direct semi-quantitative analysis of biomarkers in unprocessed menstruation blood (Photo courtesy of Dosnon, L et al. DOI: 10.1002/advs.202505170)

First Ever Technology Recognizes Disease Biomarkers Directly in Menstrual Blood in Sanitary Towels

Over 1.8 billion people menstruate worldwide, yet menstrual blood has been largely overlooked in medical practice. This blood contains hundreds of proteins, many of which correlate with their concentration... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.