We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Virtual Skin Biopsy Determines Presence of Cancerous Cells

By LabMedica International staff writers
Posted on 12 Apr 2024

When dermatologists spot an unusual mark on a patient's skin, they face a choice: monitor it for some time or remove it for biopsy. More...

Similarly, when removing breast tumors, surgeons must send excised tissues to pathologists who take several days to determine if any cancerous cells remain, leading to a second surgery for removing additional cells in about 20% of cases. Pathologists process these tissues by slicing them into thin sections and staining them with hematoxylin and eosin (H&E), which enhances the visibility of cellular structures and is crucial for diagnosing cancers and other diseases. However, this method is labor-intensive and irreversible; once a biopsy is sliced in one direction, it cannot be resectioned for alternative views. Now, a "virtual biopsy" could allow dermatologists to forego the scalpel and scan the skin to check for cancerous cells without an incision. Similarly, surgeons might soon be able to determine if they have completely removed the tumor during the procedure itself by using real-time imaging instead of waiting for traditional pathology results.

Researchers at Stanford Medicine (Stanford, CA, USA) have introduced a technique that utilizes lasers to penetrate tissue and create detailed three-dimensional reconstructions of cellular structures. This method enables the production of cross-sectional images similar to those made by slicing biopsy samples, which are typically examined under a microscope. This breakthrough could allow for noninvasive skin scans and speed up the biopsy results from other tissues, potentially offering more comprehensive diagnostic information. While further development is required to bring this technology to clinical practice, the researchers are optimistic that their innovation will transform how biopsies are performed.

“We’ve not only created something that can replace the current gold-standard pathology slides for diagnosing many conditions, but we actually improved the resolution of these scans so much that we start to pick up information that would be extremely hard to see otherwise,” said Adam de la Zerda, Ph.D., an associate professor of structural biology.

Related Links:
Stanford Medicine


Gold Member
Respiratory Syncytial Virus Test
OSOM® RSV Test
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Automated Chemiluminescence Immunoassay Analyzer
MS-i3080
Homocysteine Quality Control
Liquichek Homocysteine Control
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The liquid biopsy approach measures randomness in DNA methylation patterns to detect early-stage cancer signals in blood (Photo courtesy of 123RF)

Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability

Early-stage cancers are notoriously difficult to detect because molecular changes are subtle and often missed by existing screening tools. Many liquid biopsies rely on measuring absolute DNA methylation... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.