We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

By LabMedica International staff writers
Posted on 12 Apr 2024
Print article
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means that a one-size-fits-all approach often falls short. Individual responses to the same drug can vary dramatically. Personalized cancer treatment, which outperforms traditional treatment methods, increasingly relies on genomics—DNA profiling of a patient's cancer—to tailor therapy. Current genomic profiling processes can analyze thousands of genes but might take weeks to deliver results and still fail to provide complete clarity on the optimal treatment strategy. For the first time, researchers have combined genetic testing with personalized drug screening directly on tumor samples to identify the right treatment for children with relapsed cancers, offering a timelier and effective approach.

The functional precision medicine approach to target cancer has been developed by researchers at Florida International University (Miami, FL, USA) combines genetic testing with a new method of testing individual drugs on tumor samples. The combined approach offers advantages over the current precision medicine processes by speeding up results and broadening treatment possibilities. This innovative method involves taking a blood or tumor sample, enriching and processing the cancer cells in the lab to mimic natural growth in the body, and then testing these cells against a library of over 120 FDA-approved drugs, which includes both oncological and non-oncological treatments. These drugs are tested individually and in combinations suggested by the clinical team to identify the most effective treatment options. The entire process is completed in about a week.

This new approach was successfully implemented to guide treatment for children with relapsed cancers, showing improvement in 83% of cases. Ongoing larger trials for both children and adults aim to validate and expand these findings. Furthermore, this research opens new avenues for addressing health disparities; it explores how minority populations uniquely respond to FDA-approved drugs and aims to identify biomarkers and more effective targeted therapies for these groups.

“The results are exciting because cancer that comes back is much harder to treat. Seeing improvement in 83 percent of patients is incredibly promising,” said Florida International University cancer researcher Diana Azzam who led the study. “This could be the way we turn cancer into a manageable disease.”

Related Links:
Florida International University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
POCT Fluorescent Immunoassay Analyzer
Gold Member
Hemoglobin Testing System

Print article


Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more


view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more


view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more


view channel
Image: Insulin proteins clumping together (Photo courtesy of Jacob Kæstel-Hansen)

AI Tool Detects Tiny Protein Clumps in Microscopy Images in Real-Time

Over 55 million individuals worldwide suffer from dementia-related diseases like Alzheimer's and Parkinson's. These conditions are caused by the clumping together of the smallest building blocks in the... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.