We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




3D Bioprinted Gastric Cancer Model Uses Patient-Derived Tissue Fragments to Predict Drug Response

By LabMedica International staff writers
Posted on 10 Feb 2025

Tumor heterogeneity presents a major obstacle in the development and treatment of cancer therapies, as patients' responses to the same drug can differ, and the timing of treatment significantly influences prognosis. More...

Consequently, technologies that predict the effectiveness of anticancer treatments are essential in minimizing side effects and improving treatment efficiency. Current methods, such as gene panel-based tests and patient-derived xenograft (PDX) models, have limitations in their applicability to certain patients, have challenges in predicting drug effects, and require significant time and costs to develop. Now, researchers have successfully created a gastric cancer model using 3D bioprinting technology and patient-derived cancer tissue fragments. This groundbreaking model preserves the characteristics of actual patient tissues and is expected to rapidly assess and predict individual patient drug responses.

In collaborative research by Pohang University of Science & Technology (POSTECH, Gyeongbuk, Korea) and The Jackson Laboratory for Genomic Medicine (Farmington, CT, USA), scientists have developed an in vitro gastric cancer model by utilizing 3D bioprinting technology and tissue-specific bioink that incorporated patient-derived tissue fragments. Notably, they encapsulated cancer tissues within a stomach-derived decellularized extracellular matrix (dECM) hydrogel, which artificially facilitated cell-matrix interactions. By co-culturing these tissues with human gastric fibroblasts, they successfully replicated cancer cell-stroma interactions, thereby recreating the in vivo tumor microenvironment in vitro.

Published in the international journal Advanced Science, the research shows that this model preserved the distinct characteristics of gastric tissues from individual patients by replicating both cell-stroma and cell-matrix interactions. It demonstrated high specificity in predicting the patient's anticancer drug responses and prognosis. Additionally, the model's gene profiles related to cancer development, progression, and drug response closely mirrored those of patient tissues, outperforming conventional PDX models. The rapid fabrication process of this model through bioprinting also allows drug evaluation within two weeks of tumor tissue extraction from the patient. This efficient platform is expected to make a significant contribution to the development of personalized cancer treatments.

“By reproducing cancer cell-stroma and cell-matrix interactions, this model enhances the accuracy of drug response predictions and reduces unnecessary drug administration to non-responsive patients,” said Professor Charles Lee from The Jackson Laboratory for Genomic Medicine, who led the study.

“This is a critical preclinical platform not only for developing patient-specific treatments but also for validating new anticancer drugs and combination therapies,” added Professor Jinah Jang of POSTECH.

Related Links:
POSTECH 
The Jackson Laboratory for Genomic Medicine


Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
8-Channel Pipette
SAPPHIRE 20–300 µL
6 Part Hematology Analyzer with RET + IPF
Mispa HX 88
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: LiDia-SEQ aims to deliver near-patient NGS testing capabilities to hospitals, labs and clinics (Photo courtesy of DNAe)

World's First NGS-Based Diagnostic Platform Fully Automates Sample-To-Result Process Within Single Device

Rapid point-of-need diagnostics are of critical need, especially in the areas of infectious disease and cancer testing and monitoring. Now, a direct-from-specimen platform that performs genomic analysis... Read more

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more

Pathology

view channel
Image: The AI tool advances precision diagnostics by linking genetic mutations directly to disease types (Photo courtesy of Shutterstock)

AI Tool Simultaneously Identifies Genetic Mutations and Disease Type

Interpreting genetic test results remains a major challenge in modern medicine, particularly for rare and complex diseases. While existing tools can indicate whether a genetic mutation is harmful, they... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.