Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Deep Learning Powered AI Algorithms Improve Skin Cancer Diagnostic Accuracy

By LabMedica International staff writers
Posted on 16 Apr 2024

Artificial intelligence (AI) algorithms are increasingly being utilized in various clinical settings, such as dermatology. More...

These algorithms are developed by training a computer with hundreds of thousands or millions of images of various skin conditions, each labeled with details like the diagnosis and patient outcomes. Through a process known as deep learning, the computer learns to identify patterns in the images that are indicative of specific skin diseases, including cancers. Once sufficiently trained, the algorithm can suggest potential diagnoses based on new images of a patient’s skin. However, these algorithms do not operate in isolation; they are used under the supervision of clinicians who evaluate the patient, make their own diagnostic assessments, and decide whether to follow the algorithm's recommendations.

Now, a new study led by researchers at Stanford Medicine (Stanford, CA, USA) has found that AI algorithms, which utilize deep learning, can enhance the accuracy of diagnosing skin cancers. This benefit extends to dermatologists, though the improvement is more pronounced for non-dermatologists. The study analyzed 12 research papers that documented over 67,000 evaluations of possible skin cancers by various medical practitioners, both with and without AI assistance. Findings indicated that healthcare practitioners without AI support accurately diagnosed approximately 75% of actual skin cancer cases and correctly identified about 81.5% of non-cancerous conditions that resembled cancer. The performance of healthcare practitioners improved when they used AI to assist with diagnoses. Their sensitivity increased to about 81.1% and their specificity to 86.1%.

Although these improvements might appear modest, they are crucial for correctly diagnosing patients who are either mistakenly told they do not have cancer when they do, or incorrectly informed they have cancer when they do not. The analysis further revealed that medical students, nurse practitioners, and primary care physicians gained the most from AI assistance, with average improvements of approximately 13 points in sensitivity and 11 points in specificity. While dermatologists and dermatology residents already showed higher overall accuracy, their diagnostic performance also saw gains in sensitivity and specificity with AI assistance. The researchers are now looking to further explore the potential and challenges of integrating AI tools into healthcare, particularly focusing on how physicians' and patients' perceptions and attitudes towards AI could affect its adoption.

“Previous studies have focused on how AI performs when compared with physicians,” said postdoctoral scholar Jiyeong Kim, PhD. “Our study compared physicians working without AI assistance with physicians using AI when diagnosing skin cancers.”

Related Links:
Stanford Medicine


Gold Member
Serological Pipets
INTEGRA Serological Pipets
Collection and Transport System
PurSafe Plus®
New
Gel Cards
DG Gel Cards
New
Urine Chemistry Control
Dropper Urine Chemistry Control
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: AiPlex VAS for the MosaiQ platform is designed to help reduce time-to-diagnosis for patients with autoimmune vasculitis (Photo courtesy of AliveDx)

Novel Multiplex Assay Supports Diagnosis of Autoimmune Vasculitis

Autoimmune vasculitis and related conditions are difficult to diagnose quickly and accurately, often requiring multiple tests to confirm the presence of specific autoantibodies. Traditional methods can... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.