We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Simple Blood Test Combined With Personalized Risk Model Improves Sepsis Diagnosis

By LabMedica International staff writers
Posted on 06 Apr 2024
Print article
Image: Scientists have developed a new tool in the race to improve the diagnosis and prognosis of sepsis (Photo courtesy of Roman Zaiets/Shutterstock)
Image: Scientists have developed a new tool in the race to improve the diagnosis and prognosis of sepsis (Photo courtesy of Roman Zaiets/Shutterstock)

Sepsis, a critical condition that arises from organ dysfunction due to severe infection, can progress to severe sepsis and septic shock, leading to multi-organ failure and increased mortality rates. The complexity of diagnosing sepsis stems from the absence of a definitive test, with current detection methods depending on broad-ranged biomarkers such as CRP, PCT, and lactate levels. The disease's variability and the general approach of administering broad-spectrum antibiotics, antivirals, and antifungals underscore the urgency for more specific diagnostic and treatment strategies. New research to be presented at ECCMID 2024 highlights the success achieved by researchers in identifying distinct molecular signatures associated with the clinical signs of sepsis that could enable more accurate diagnosis and prognosis of the condition, as well as help design targeted therapies for patients who stand to benefit the most.

In this study, researchers from Lund University (Lund, Sweden) analyzed plasma samples collected over a period of five years from 1,364 adults suspected of sepsis upon their arrival at the emergency department. Of these, 913 were diagnosed with sepsis out of 1,073 who had infections. Through mass spectrometry, the researchers developed detailed molecular profiles, enabling them to identify protein patterns that accurately predict septic shock. This information was used to create a machine-learning model, categorizing patients into risk groups for developing septic shock, thus demonstrating the model's potential to predict sepsis severity and associated mortality risks accurately.

Furthermore, the researchers identified protein panels indicative of six organ dysfunctions (cardiac, CNS, coagulation, liver, kidney, respiratory) and various infections, influencing the distinct proteomic pathways influencing sepsis. Risk classifications based on organ dysfunction and infection probabilities offered insights into the mortality risks, paving the way for targeted therapeutic interventions. However, the researchers acknowledged the study's limitations, such as the need for validation across diverse cohorts and the dynamic nature of sepsis requiring continuous monitoring. This research marks a significant step toward advancing the understanding and management of sepsis, emphasizing the need for further studies to explore the progression of proteomic changes in sepsis over time.

“A fast test that provides more accurate sepsis diagnosis and could also predict who is at greater risk of poorer outcomes now seems a genuine possibility”, said co-lead author Dr. Lisa Mellhammar from Lund University. “Any research like this needs clinical validation and many hurdles must be cleared before these biomarkers are used in the clinic. But we envision this as a tool that could be deployed worldwide, as the future of early detection of sepsis.”

Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Hemoglobin/Haptoglobin Assay
IDK Hemoglobin/Haptoglobin Complex ELISA
New
Chlamydia Trachomatis Assay
Chlamydia Trachomatis IgG

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Pathology

view channel
Image: The ready-to-use DUB enzyme assay kits accelerate routine DUB activity assays without compromising data quality (Photo courtesy of Adobe Stock)

Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation

Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.