We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

By LabMedica International staff writers
Posted on 25 Apr 2024
Print article
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared to other screening types. Despite smoking being the primary risk factor, up to 20% of lung cancer cases occur in individuals who have never smoked. The prevailing method for lung cancer screening involves low-dose CT (LDCT) scans. These scans are not only expensive but also prone to generating both false positives and negatives, besides exposing patients to radiation. Consequently, merely about 10% of individuals recommended for screening actually undergo regular scans, a stark contrast to the higher participation rates seen with mammography for breast cancer and colonoscopy for colorectal cancer. As such, lung cancer is often diagnosed at an advanced stage, when treatment options are limited. Researchers are now developing a new blood test aimed at earlier and more accurate detection of lung cancer, potentially improving the chances of effective treatment.

Researchers at Tufts School of Medicine (Boston, MA, USA) and collaborating institutions are investigating a blood test that utilizes an array to assess DNA methylation levels across approximately 850,000 genomic sites in blood leukocytes, aiming to identify changes in these levels. DNA methylation, a genetic process influenced by environmental factors, is crucial in regulating gene expression and is known to be altered in various diseases, including cancer. It often results in either the silencing of tumor suppressor genes or the activation of oncogenes. The researchers utilized archived blood samples from the CLUE cohort study, selecting those from participants who later developed lung cancer and comparing them to samples from control subjects who remained cancer-free.

Their analysis revealed distinct regions where methylation levels varied significantly between individuals who developed lung cancer and those who did not, corroborating findings from other studies. The researchers are also employing data from the National Lung Screening Trial, which involved smokers, though they plan to extend their research to non-smokers. Their current focus is on determining whether variations in methylation can differentiate between individuals with positive LDCT results who actually have cancer and those with false positives, as well as those with negative results who are cancer-free from those with false negatives who are later diagnosed with lung cancer during follow-ups. The key objective is to enhance early detection through this novel blood testing approach, reducing the need for invasive procedures and potentially saving more lives.

“We believe a blood test using DNA methylation markers could be a better way to stratify cancer risk among people we know are already at higher risk because of their smoking history,” said Professor Dominique Michaud at Tufts University School of Medicine. “Our goal is to identify an effective blood test that can reduce unnecessary scans in the future and help us identify true positive and false negative LDCT scans.”

Related Links:
Tufts School of Medicine

Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test
New
Gold Member
Strep Pneumoniae Rapid Test
Strep Pneumoniae (6503 – 6573)
New
Hematology Analyzer
XS-500i
New
Moxifloxacin Resistance Assay
Allplex MG & MoxiR Assay

Print article

Channels

Microbiology

view channel
Image: The breakthrough system offers a faster way to diagnose bloodborne infections (Photo courtesy of Melio)

Culture-Free Platform Rapidly Identifies Blood Stream Infections

Neonatal sepsis is a life-threatening condition that results from bloodstream infections in newborns under 28 days old. Due to their immature immune systems, newborns are especially vulnerable to infections.... Read more

Pathology

view channel
Image: The technique predicts how well some breast cancer patients will respond to chemotherapy (Photo courtesy of Shutterstock)

New Technique Predicts Tumor’s Responsiveness to Breast Cancer Treatment

Breast cancer is the most common cancer among women worldwide, with 2.3 million new cases diagnosed each year. In the era of personalized medicine, targeted therapies for different types of breast cancer... Read more

Technology

view channel
Image: Human tear film protein sampling methods (Photo courtesy of Clinical Proteomics. 2024 Mar 13;21:23. doi: 10.1186/s12014-024-09475-8)

New Lens Method Analyzes Tears for Early Disease Detection

Bodily fluids, including tears and saliva, carry proteins that are released from different parts of the body. The presence of specific proteins in these biofluids can be a sign of health issues.... Read more

Industry

view channel
Image: The game-changing immunoassay diagnostics platform delivers results from whole blood sample in 10 minutes (Photo courtesy of SpinChip)

bioMérieux Acquires Norwegian Immunoassay Start-Up SpinChip Diagnostics

bioMérieux (Marcy l’Étoile, France) has agreed to acquire SpinChip Diagnostics (Oslo, Norway), the developer of a game-changing immunoassay diagnostics platform. The small benchtop analyzer is well adapted... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.