We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Nontoxic QD Nanoparticles Inhibit Cancer Cell Growth

By LabMedica International staff writers
Posted on 29 May 2018
Print article
Image: Photomicrographs of A549 lung cancer cells; left = untreated; right = treated with quantum dots (Photo courtesy of Swansea University).
Image: Photomicrographs of A549 lung cancer cells; left = untreated; right = treated with quantum dots (Photo courtesy of Swansea University).
An environmentally friendly method has been developed for the production of quantum dot nanoparticles, which have antimicrobial properties and demonstrate potential for cancer diagnosis and treatment.

Low-dimensional (<10 nanometer) semiconductor quantum dots (QDs) have received great attention for potential use in biomedical applications (diagnosis and therapy) for which larger nanoparticles (>10 nanometers) are not suitable. However, the chemical synthesis of quantum dots is complicated, expensive, and has toxic side effects.

To avoid these toxic effects, investigators at Swansea University (United Kingdom) developed a non-toxic plant-based alternative method of producing quantum dots, using tealeaf extract. Extracts derived from tealeaves (Camellia sinensis) contain a wide variety of compounds, including polyphenols, amino acids, vitamins, and antioxidants. The investigators added tealeaf extract to a mixture of cadmium sulfate (CdSO4) and sodium sulfide (Na2S) and allowed the solution to incubate until quantum dots formed.

The investigators examined the biological activity of these CdS QDs in different applications, namely, (a) antibacterial activity, (b) bioimaging, and (c) apoptosis of lung cancer cells. The antibacterial activity of the CdS QDs was evaluated and showed that CdS QDs effectively inhibited bacterial growth.

The investigators further reported in the March 9, 2018, online edition of the journal Applied Nano Materials that the quantum dots exhibited cytotoxicity toward A549 lung cancer cells when compared to a control (no QD treatment). The cytotoxic effect on A549 cancer cells was comparable to that of a standard drug, cisplatin. Furthermore, these CdS QDs produced high-contrast fluorescence images of A549 cancer cells indicating a strong interaction with the cancer cell.

To further understand the role of CdS QDs in bioimaging and the cytotoxic effect in A549 cells, the investigators performed fluorescence emission and flow cytometry analyses. The flow cytometry analysis confirmed that the CdS QDs were arresting A549 cell growth at the S phase of the cell cycle, inhibiting further growth of these lung cancer cells.

Senior author Dr. Sudhagar Pitchaimuthu, senior research fellow in engineering at Swansea University, said, "Our research confirmed previous evidence that tea leaf extract can be a non-toxic alternative to making quantum dots using chemicals. The real surprise, however, was that the dots actively inhibited the growth of the lung cancer cells. We had not been expecting this. The CdS quantum dots derived from tealeaf extract showed exceptional fluorescence emission in cancer cell bioimaging compared to conventional CdS nanoparticles. Quantum dots are therefore a very promising avenue to explore for developing new cancer treatments. Building on this exciting discovery, the next step is to scale up our operation, hopefully with the help of other collaborators. We want to investigate the role of tealeaf extract in cancer cell imaging, and the interface between quantum dots and the cancer cell. We would like to set up a "quantum dot factory" which will allow us to explore more fully the ways in which they can be used."

Related Links:
Swansea University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.