We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Biobots Advance Soft Biological Machines

By LabMedica International staff writers
Posted on 13 Jul 2014
Print article
Image: Tiny walking “bio-bots” are powered by muscle cells and controlled by an electric field (Photo courtesy of Janet Sinn-Hanlon, Design Group@VetMed).
Image: Tiny walking “bio-bots” are powered by muscle cells and controlled by an electric field (Photo courtesy of Janet Sinn-Hanlon, Design Group@VetMed).
A new generation of walking “biobots” powered by muscle cells and controlled with electrical pulses are providing researchers with never-before attained control over their function.

The engineers published their research in the online June 30, 2014, in the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS). “Biological actuation driven by cells is a fundamental need for any kind of biological machine you want to build,” said study leader Rashid Bashir, a professor and head of bioengineering at the University of Illinois at Urbana-Champaign (U of I; USA). “We’re trying to integrate these principles of engineering with biology in a way that can be used to design and develop biological machines and systems for environmental and medical applications. Biology is tremendously powerful, and if we can somehow learn to harness its advantages for useful applications, it could bring about a lot of great things.”

Prof. Bashir’s group has been innovators in designing and constructing bio-bots, less than 1 cm in size, made of flexible three-dimensional (3D)-printed hydrogels and living cells. Earlier, the engineers demonstrated biobots that “walk” on their own, powered by beating heart cells from lab rodents. However, heart cells continually contract, denying researchers control over the bot’s motion. This makes it difficult to use heart cells to engineer a biobot that can be turned on and off, sped up or slowed down.

The new biobots are powered by a band of skeletal muscle cells that can be triggered by an electric pulse. This gives the researchers a simple way to control the biobots and creates an avenue for other cutting-edge design ideas, so engineers can tailor biobots for specific applications. “Skeletal muscles cells are very attractive because you can pace them using external signals,” Prof. Bashir said. “For example, you would use skeletal muscle when designing a device that you wanted to start functioning when it senses a chemical or when it received a certain signal. To us, it’s part of a design toolbox. We want to have different options that could be used by engineers to design these things.”

The design is engineered similar to the muscle-tendon-bone complex found in nature. There is a support of 3D-printed hydrogel, strong enough to give the biobot structure but flexible enough to bend like a joint. Two posts serve to fasten a strip of muscle to the backbone, similar in the way tendons attach muscle to bone, but the posts also act as feet for the biobot. A bot’s speed can be controlled by adjusting the frequency of the electric pulses. A higher frequency causes the muscle to contract faster, thereby speeding up the biobot’s progress as seen in the video (below).

“It's only natural that we would start from a biomimetic design principle, such as the native organization of the musculoskeletal system, as a jumping-off point,” said graduate student Caroline Cvetkovic, co-first author of the paper. “This work represents an important first step in the development and control of biological machines that can be stimulated, trained, or programmed to do work. It's exciting to think that this system could eventually evolve into a generation of biological machines that could aid in drug delivery, surgical robotics, 'smart' implants, or mobile environmental analyzers, among countless other applications.”

Next, the researchers will work to gain even greater control over the biobots’ motion, such as integrating neurons so the biobots can be directed in different directions with light or chemical gradients. On the engineering side, they hope to design a hydrogel backbone that allows the biobot to move in different directions based on different signals. Due to 3D printing technology, engineers can examine different shapes and designs quickly. Prof. Bashir and colleagues even plan to integrate a unit into undergraduate lab curriculum so that students can design different kinds of biobots.

“The goal of ‘building with biology’ is not a new one--tissue engineering researchers have been working for many years to reverse engineer native tissue and organs, and this is very promising for medical applications,” said graduate student Ritu Raman, co-first author of the study. “But why stop there? We can go beyond this by using the dynamic abilities of cells to self-organize and respond to environmental cues to forward engineer non-natural biological machines and systems.”

“The idea of doing forward engineering with these cell-based structures is very exciting,” Prof. Bashir commented. “Our goal is for these devices to be used as autonomous sensors. We want it to sense a specific chemical and move towards it, then release agents to neutralize the toxin, for example. Being in control of the actuation is a big step forward toward that goal.”

Related Links:

University of Illinois at Urbana-Champaign


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.