We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Peptidase D Regulates Tumor Suppressor Cell Death Function

By LabMedica International staff writers
Posted on 27 Dec 2017
Print article
Image: Cell-culture images illustrate that disabling the protein peptidase is an effective strategy for killing cancer cells (Photo courtesy of Roswell Park Cancer Institute).
Image: Cell-culture images illustrate that disabling the protein peptidase is an effective strategy for killing cancer cells (Photo courtesy of Roswell Park Cancer Institute).
Cancer researchers have uncovered a mechanism that allows cells to regulate the tumor suppressor protein p53 and have explained how tumor cells exploit this mechanism in order to survive and grow.

Most cancers fail to propagate unless the p53 gene is inactivated through mutation, or if the p53 protein becomes inactivated. A previously unknown mechanism for p53 regulation was described by investigators at the Roswell Park Cancer Institute (Buffalo, NY, USA) in the December 12, 2017, online edition of the journal Nature Communications. They found that the enzyme peptidase D (PEPD) bound and suppressed over half of nuclear and cytoplasmic p53 under normal conditions, independent of its enzymatic activity.

PEPD also known as prolidase among other names was discovered 80 years ago and shown to hydrolyze dipeptides with proline or hydroxyproline at the carboxy terminus. It is expressed ubiquitously and important for collagen metabolism. PEPD also upregulates various signaling molecules including hypoxia-inducible factor-1, transforming growth factor beta-, and its receptor via its catalytic products. Loss of enzymatic activity, due to PEPD gene mutation, is widely believed to be responsible for a disease known as PEPD deficiency (PD), which involves multiple organs and tissues, e.g., skin ulcer, reduced bone growth, splenomegaly, immune malfunction, and mental retardation.

The investigators showed that PEPD also suppressed p53 by directly binding to p53 in the nucleus and cytoplasm and suppressing both transcription-dependent and transcription-independent activities of p53, which did not require PEPD enzymatic activity. In addition, they found that PEPD suppression of p53 was essential for cell survival and tumor growth. P53 was activated by various cellular stress inducers.

Using doxorubicin (DOX) and hydrogen peroxide (H2O2) as examples, the investigators demonstrated that the PEPD-p53 complex served as a p53 depot which enabled robust p53 activation by stress. Releasing p53 from the PEPD-p53 complex resulted in the death or growth inhibition of cancer cells, which suggested the possibility that tumor cells overexpress PEPD in order to enhance p53 inhibition.

“This study uncovers a very important physiological function of PEPD and a critical new regulatory mechanism of p53,” said senior author Dr. Yuesheng Zhang, professor of oncology at the Roswell Park Cancer Institute. “The interaction between PEPD and p53 likely operates in most if not all cells, since both proteins are expressed ubiquitously. Therefore, disrupting the way in which PEPD suppresses p53 represents an important new therapeutic strategy for controlling many different types of cancer.”

Related Links:
Roswell Park Cancer Institute

Gold Member
Chagas Disease Test
CHAGAS Cassette
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Blood Gas and Chemistry Analysis System
Edan i500
New
Typhoid Rapid Test
OnSite Typhoid IgG/IgM Combo Rapid Test

Print article

Channels

Clinical Chemistry

view channel
Image: A one-step confirmatory laboratory test could definitively diagnose active syphilis infection within 10 minutes (Photo courtesy of Adobe Stock)

First Comprehensive Syphilis Test to Definitively Diagnose Active Infection In 10 Minutes

In the United States, syphilis cases have surged by nearly 80% from 2018 to 2023, with 209,253 cases recorded in the most recent year of data. Syphilis, which can be transmitted sexually or from mother... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.