We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBE SCIENTIFIC, LLC

Download Mobile App




New Method Uses Pulsed Infrared Light to Find Cancer's 'Fingerprints' In Blood Plasma

By LabMedica International staff writers
Posted on 14 Apr 2025

Cancer diagnoses have traditionally relied on invasive or time-consuming procedures like tissue biopsies. More...

Now, new research published in ACS Central Science introduces a method that utilizes pulsed infrared light to identify molecular signatures in blood plasma that may indicate the presence of certain cancers. In this proof-of-concept study, blood plasma samples from over 2,000 individuals were analyzed to correlate specific molecular patterns with lung cancer, suggesting the possibility of a unique "cancer fingerprint."

Blood plasma, the liquid component of blood, is free of cells and transports various molecules, including proteins, metabolites, lipids, and salts throughout the body. Certain molecules within plasma can serve as biomarkers for potential health issues. For example, elevated levels of prostate-specific antigen are used for prostate cancer screening. A medical test that could analyze a wide range of molecules might be capable of identifying specific patterns associated with different types of cancer, enabling faster diagnoses and reducing healthcare costs. To identify potential chemical markers of cancer, researchers from Ludwig Maximilian University of Munich (Munich, Germany) employed a method called electric-field molecular fingerprinting, which uses pulsed infrared light to analyze complex molecular mixtures in blood plasma.

In their study, the researchers applied this technique by directing ultra-short infrared light pulses through plasma samples. They then analyzed data from 2,533 participants, including individuals with lung, prostate, breast, or bladder cancer, as well as healthy controls. For each sample, they captured the "infrared molecular fingerprint," which represents the light emitted by the molecular components of the plasma. By examining these diverse molecular patterns from both cancer patients and non-cancer controls, the researchers trained a machine learning model to identify specific molecular signatures associated with the four cancer types. The model was tested on a separate set of samples to assess its ability to recognize new, unseen data. The technique achieved up to 81% accuracy in detecting lung cancer-related molecular patterns and distinguishing them from non-cancer samples. However, the model's performance was less effective in identifying the other three types of cancer. Moving forward, the researchers plan to refine and expand their approach to detect additional cancers and other health conditions.

"Laser-based infrared molecular fingerprinting detects cancer, demonstrating its potential for clinical diagnostics,” said LMU Munich researcher Mihaela Žigman. “With further technological developments and independent validation in sufficiently powered clinical studies, it could establish generalizable applications and translate into clinical practice — advancing the way we diagnose and screen for cancer today.”


Gold Member
Veterinary Hematology Analyzer
Exigo H400
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
UHF RFID Tag & Inlay
AD-327 U9 ETSI Pure 95
New
Varicella Zoster Test
ZEUS ELISA Varicella Zoster IgG Test System
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: The tip optofluidic immunoassay platform enables rapid, multiplexed antibody profiling using only 1 μL of fingertip blood (Photo courtesy of hLife, DOI:10.1016/j.hlife.2025.04.005)

POC Diagnostic Platform Performs Immune Analysis Using One Drop of Fingertip Blood

As new COVID-19 variants continue to emerge and individuals accumulate complex histories of vaccination and infection, there is an urgent need for diagnostic tools that can quickly and accurately assess... Read more

Pathology

view channel
Image: Microscopy image of invasive breast cancer cells degrading their underlying extracellular matrix (Photo courtesy of University of Turku)

Visualization Tool Illuminates Breast Cancer Cell Migration to Suggest New Treatment Avenues

Patients with breast cancer who progress from ductal carcinoma in situ (DCIS) to invasive ductal carcinoma (IDC) face a significantly worse prognosis, as metastatic disease remains incurable.... Read more

Technology

view channel
Image: The machine learning-based method delivers near-perfect survival estimates for PAC patients (Photo courtesy of Shutterstock)

AI Method Predicts Overall Survival Rate of Prostate Cancer Patients

Prostate adenocarcinoma (PAC) accounts for 99% of prostate cancer diagnoses and is the second most common cancer in men globally after skin cancer. With more than 3.3 million men in the United States diagnosed... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.