We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Rapid, Ultra-Sensitive, PCR-Free Detection Method Makes Genetic Analysis More Accessible

By LabMedica International staff writers
Posted on 22 Apr 2025

Genetic testing has been an important method for detecting infectious diseases, diagnosing early-stage cancer, ensuring food safety, and analyzing environmental DNA. More...

For a long time, polymerase chain reaction (PCR) has been the gold standard for analyzing DNA changes. With the onset of the COVID-19 pandemic, the term "PCR" became widely recognized. However, PCR tests are expensive, time-consuming, and require specialized lab equipment and trained personnel. While PCR-based genetic testing gained significant attention during the pandemic, light-based methods are now offering a PCR-free alternative for genetic analysis.

Researchers at Osaka Metropolitan University (Osaka, Japan) have developed a groundbreaking light-induced DNA detection method that employs heterogeneous probe particles. This innovative technique enables highly sensitive and rapid genetic analysis without the need for PCR amplification. This advance promises to make genetic testing faster, more affordable, and more precise, benefiting fields like medicine, environmental science, and portable diagnostics. Unlike PCR, which amplifies DNA sequences by creating millions of copies for detection, this new approach directly identifies DNA by concentrating it and enhancing its specificity through optical forces and the photothermal effect. In their study, published in ACS Sensors, the researchers used heterogeneous probe particles, including gold nanoparticles and polystyrene microparticles, to create a detection system. These probes are short DNA sequences that are designed to bind with complementary sequences in the target DNA.

This process, known as DNA hybridization, results in the formation of detectable DNA pairs through fluorescence. The solution containing the target DNA and probe particles was then irradiated with laser light. When the particle size aligns with the laser wavelength, a phenomenon called Mie scattering occurs, which generates optical forces that move the particles and speed up DNA hybridization. The gold nanoparticles absorb the laser light, producing localized heat, also known as the photothermal effect, which further enhances the specificity of the hybridization. By eliminating the need for PCR amplification, this method reduces both the cost and complexity of genetic testing while delivering faster results. This innovation has the potential to make genetic analysis more accessible, with wide-ranging applications in healthcare and personal health tracking.

“Our light-induced method detects DNA without the need for PCR,” wrote the study’s lead authors. “Using just about five minutes of laser light irradiation, our method demonstrated great potential for accurate mutation detection with a sensitivity one order of magnitude higher than that of digital PCR. We aim to apply this PCR-free technology to high-sensitivity cancer diagnostics, quantum life science research, and even at-home or environmental DNA testing.”

Related Links:
Osaka Metropolitan University


New
Gold Member
Hybrid Pipette
SWITCH
Portable Electronic Pipette
Mini 96
Gram-Negative Blood Culture Assay
LIAISON PLEX Gram-Negative Blood Culture Assay
Clinical Chemistry System
P780
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The new method can contribute to earlier detection of cirrhosis and liver cancer (Photo courtesy of 123RF)

Simple Test Predicts Risk of Severe Liver Disease

Severe liver diseases such as cirrhosis and liver cancer are becoming increasingly common and often carry a poor prognosis when detected late. Current screening tools are limited in their ability to identify... Read more

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: Automated cell imaging discriminates CD8+ T cells according to natalizumab treatment outcome in MS patients (B Chaves et al., Nat Commun 16, 5533 (2025). DOI: 10.1038/s41467-025-60224-3)

Novel Tool Predicts Most Effective Multiple Sclerosis Medication for Patients

Multiple sclerosis (MS) is a chronic autoimmune and degenerative neurological disease that affects the central nervous system, leading to motor, cognitive, and mental impairments. Symptoms can include... Read more

Technology

view channel
Image: The SWITCH hybrid pipette is designed to simplify and accelerate pipetting tasks (Photo courtesy of INTEGRA)

Hybrid Pipette Combines Manual Control with Fast Electronic Aliquoting

Manual pipettes offer the control needed for delicate tasks such as mixing or supernatant removal, but typically fall short in repetitive workflows like aliquoting. Electronic pipettes solve this problem... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.