Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Rapid, Ultra-Sensitive, PCR-Free Detection Method Makes Genetic Analysis More Accessible

By LabMedica International staff writers
Posted on 22 Apr 2025

Genetic testing has been an important method for detecting infectious diseases, diagnosing early-stage cancer, ensuring food safety, and analyzing environmental DNA. More...

For a long time, polymerase chain reaction (PCR) has been the gold standard for analyzing DNA changes. With the onset of the COVID-19 pandemic, the term "PCR" became widely recognized. However, PCR tests are expensive, time-consuming, and require specialized lab equipment and trained personnel. While PCR-based genetic testing gained significant attention during the pandemic, light-based methods are now offering a PCR-free alternative for genetic analysis.

Researchers at Osaka Metropolitan University (Osaka, Japan) have developed a groundbreaking light-induced DNA detection method that employs heterogeneous probe particles. This innovative technique enables highly sensitive and rapid genetic analysis without the need for PCR amplification. This advance promises to make genetic testing faster, more affordable, and more precise, benefiting fields like medicine, environmental science, and portable diagnostics. Unlike PCR, which amplifies DNA sequences by creating millions of copies for detection, this new approach directly identifies DNA by concentrating it and enhancing its specificity through optical forces and the photothermal effect. In their study, published in ACS Sensors, the researchers used heterogeneous probe particles, including gold nanoparticles and polystyrene microparticles, to create a detection system. These probes are short DNA sequences that are designed to bind with complementary sequences in the target DNA.

This process, known as DNA hybridization, results in the formation of detectable DNA pairs through fluorescence. The solution containing the target DNA and probe particles was then irradiated with laser light. When the particle size aligns with the laser wavelength, a phenomenon called Mie scattering occurs, which generates optical forces that move the particles and speed up DNA hybridization. The gold nanoparticles absorb the laser light, producing localized heat, also known as the photothermal effect, which further enhances the specificity of the hybridization. By eliminating the need for PCR amplification, this method reduces both the cost and complexity of genetic testing while delivering faster results. This innovation has the potential to make genetic analysis more accessible, with wide-ranging applications in healthcare and personal health tracking.

“Our light-induced method detects DNA without the need for PCR,” wrote the study’s lead authors. “Using just about five minutes of laser light irradiation, our method demonstrated great potential for accurate mutation detection with a sensitivity one order of magnitude higher than that of digital PCR. We aim to apply this PCR-free technology to high-sensitivity cancer diagnostics, quantum life science research, and even at-home or environmental DNA testing.”

Related Links:
Osaka Metropolitan University


Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Sperm Quality Analyis Kit
QwikCheck Beads Precision and Linearity Kit
New
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Microbiology

view channel
Image: New diagnostics could predict a woman’s risk of a common sexually transmitted infection (Photo courtesy of 123RF)

New Markers Could Predict Risk of Severe Chlamydia Infection

Chlamydia trachomatis is a common sexually transmitted infection that can cause pelvic inflammatory disease, infertility, and other reproductive complications when it spreads to the upper genital tract.... Read more

Technology

view channel
Image: The sensor can help diagnose diabetes and prediabetes on-site in a few minutes using just a breath sample (Photo courtesy of Larry Cheng/Penn State)

Graphene-Based Sensor Uses Breath Sample to Identify Diabetes and Prediabetes in Minutes

About 37 million U.S. adults live with diabetes, and one in five is unaware of their condition. Diagnosing diabetes often requires blood draws or lab visits, which are costly and inconvenient.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.