We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Spinal Fluid Biomarker for Parkinson’s Disease Offers Early and Accurate Diagnosis

By LabMedica International staff writers
Posted on 29 Apr 2025

Parkinson’s disease is a neurodegenerative condition typically diagnosed at an advanced stage based on clinical symptoms, primarily motor disorders. More...

However, by this time, the brain has already undergone significant and irreversible damage. Additionally, diagnosis can be challenging and often inaccurate because the disease manifests in various forms, with symptoms overlapping those of other disorders. Researchers have now identified a biomarker in spinal fluid that enables a reliable diagnosis at an earlier stage and provides insights into disease progression and the effects of therapy.

Parkinson’s disease is marked by the loss of dopaminergic nerve cells in the brain, leading to progressively worsening motor impairments. While dopamine supplements can temporarily compensate for the loss and alleviate symptoms, they do not address the underlying cause. A key factor in the development of Parkinson’s disease is the misfolding of the protein alpha-synuclein (αSyn) from α-helical structures to β-sheet-rich structures. These misfoldings cause the protein to become sticky, leading to the formation of larger complexes known as oligomers. The oligomers then form long fibrillar filaments, which aggregate into large Lewy bodies in the brain.

In two independent clinical cohorts comprising a total of 134 participants, researchers from the PRODI Center for Protein Diagnostics at Ruhr University Bochum (Bochum, Germany) and its spin-off biotech company betaSENSE (Bochum, Germany) demonstrated that the misfolding of αSyn in bodily fluids is a reliable biomarker for diagnosing Parkinson’s disease, with sensitivity and specificity exceeding 90 percent. The study, which used cerebrospinal fluid samples from patients at Parkinson’s centers in Germany, employed betaSENSE’s patented iRS (immuno-infrared sensor) technology. This technology has already been successfully applied in diagnosing Alzheimer’s disease. The findings, published in EMBO Molecular Medicine, revealed that misfolding of the biomarker Aβ can predict the risk of Alzheimer’s dementia with high accuracy, up to 17 years before a clinical diagnosis. Beyond diagnostic applications, this technology can also aid in the development of new therapeutic agents and validate their effectiveness in clinical trials.

Related Links:
Ruhr University Bochum
betaSENSE


Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Silver Member
PCR Plates
Diamond Shell PCR Plates
Alcohol Testing Device
Dräger Alcotest 7000
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Whole-genome sequencing enables broader detection of DNA repair defects to guide PARP inhibitor cancer therapy (Photo courtesy of Illumina)

Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment

Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more

Pathology

view channel
Image: AI models combined with DOCI can classify thyroid cancer subtypes (Photo courtesy of T. Vasse et al., doi 10.1117/1.BIOS.3.1.015001)

AI-Powered Label-Free Optical Imaging Accurately Identifies Thyroid Cancer During Surgery

Thyroid cancer is the most common endocrine cancer, and its rising detection rates have increased the number of patients undergoing surgery. During tumor removal, surgeons often face uncertainty in distinguishing... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.