We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Tissue Typing Method Revolutionizes Field of Stem Cell Transplantation

By LabMedica International staff writers
Posted on 24 Jan 2016
Saliva and blood samples can be typed using a new system that allows scientists to obtain very high quality information about a patient and donor's tissue types, enabling them to make the best possible matches. More...


As well as improving outcomes, the technology should be faster than previous techniques, allowing the potential for more donors to be typed every year. Typing more donors would increase the chance of every patient finding a well matched donor—a vital move as currently only 60% of transplant patients receive the best possible match.

The technology, known as Third Generation Sequencing, also allows scientists working for the Anthony Nolan charity (London, UK) a further understanding of donor-patient compatibility in stem cell transplantation. The new highly accurate reads of the patient and donor's human leukocyte antigen (HLA) types will allow the investigators to identify currently unknown factors which contribute to the success or failure of a stem cell transplant. This information could prove to be invaluable for improving the success of future transplants.

The latest technology resolves this by generating exceptionally long DNA read lengths and by sequencing different tissues types in isolation. The Anthony Nolan scientists are working with new Single Molecule Real-Time (SMRT) DNA sequencing technology (Pacific Biosciences; Menlo Park, CA, USA). SMRT Sequencing is built upon two key innovations: zero-mode waveguides (ZMWs) and phospholinked nucleotides. ZMWs allow light to illuminate only the bottom of a well in which a DNA polymerase/template complex is immobilized. Phospholinked nucleotides allow observation of the immobilized complex as the DNA polymerase produces a completely natural DNA strand.

Katy Latham, PhD, Director of Laboratories at Anthony Nolan, said, “The implications of this technology could be enormous, allowing for accurate HLA typing in a single experiment and making redundant the need for multiple experiments and cross-referencing of results. This is significant as high resolution HLA typing has been shown to significantly improve outcomes when stem cells transplant recipients and their unrelated donors are matched very closely.”

Related Links:

Anthony Nolan 
Pacific Biosciences



New
Gold Member
Serological Pipets
INTEGRA Serological Pipets
Serological Pipet Controller
PIPETBOY GENIUS
New
Chlamydia Trachomatis Test
Aptima Chlamydia Trachomatis Assay
New
Automated PCR Setup
ESTREAM
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: CellLENS enables the potential precision therapy strategies against specific immune cell populations in the tissue environment (Photo courtesy of MIT)

New AI System Uncovers Hidden Cell Subtypes to Advance Cancer Immunotherapy

To produce effective targeted therapies for cancer, scientists need to isolate the genetic and phenotypic characteristics of cancer cells, both within and across different tumors. These differences significantly... Read more

Technology

view channel
Image: Researchers Dr. Lee Eun Sook and Dr. Lee Jinhyung examine the imprinting equipment used for nanodisk synthesis (Photo courtesy of KRISS)

Multifunctional Nanomaterial Simultaneously Performs Cancer Diagnosis, Treatment, and Immune Activation

Cancer treatments, including surgery, radiation therapy, and chemotherapy, have significant limitations. These treatments not only target cancerous areas but also damage healthy tissues, causing side effects... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.