We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




AI-Based Blood Test Detects Ovarian Cancer With 93% Accuracy

By LabMedica International staff writers
Posted on 30 Jan 2024
Print article
Image: Micrograph of a mucinous ovarian tumor (Photo courtesy of National Institutes of Health)
Image: Micrograph of a mucinous ovarian tumor (Photo courtesy of National Institutes of Health)

Ovarian cancer, often termed the silent killer, typically presents no symptoms in its initial stages, leading to late detection when treatment becomes challenging. The stark contrast in survival rates highlights the urgent need for early diagnosis: while late-stage ovarian cancer patients have a five-year survival rate of around 31% post-treatment, early detection and treatment can raise this rate to over 90%. Despite over three decades of research, developing an accurate early diagnostic test for ovarian cancer has proved challenging. This difficulty stems from the disease's molecular origins, where multiple pathways can lead to the same cancer type.

Scientists at the Georgia Tech Integrated Cancer Research Center (ICRC, Atlanta, GA, USA) have now made a breakthrough by integrating machine learning with blood metabolite information, developing a test that can detect ovarian cancer with 93% accuracy in their study group. This test outperforms existing detection methods, especially in identifying early-stage ovarian disease among women clinically considered normal. The researchers have created a novel diagnostic approach, utilizing a patient's metabolic profile to assign a more precise probability of the presence or absence of the disease.

Mass spectrometry, used to identify metabolites in blood through their mass and charge, faces a limitation: less than 7% of these metabolites in human blood have been chemically characterized. Thus, pinpointing specific molecular processes behind an individual's metabolic profile remains a challenge. Nevertheless, the team recognized the potential of using the presence of varying metabolites, as detected by mass spectrometry, to create accurate predictive models using machine learning. This approach is similar to using individual facial features for developing facial recognition algorithms.

In their innovative method, the researchers combined metabolomic profiles with machine learning classifiers, achieving 93% accuracy in a study involving 564 women from Georgia, North Carolina, Philadelphia, and Western Canada. This group included 431 active ovarian cancer patients and 133 women without the disease. Ongoing studies aim to explore the test's ability to detect very early-stage disease in symptom-free women. The vision for clinical application is a future where individuals with a metabolic profile indicating a low likelihood of cancer undergo annual monitoring, while those with scores suggesting a high probability of ovarian cancer receive more frequent monitoring or immediate referral for advanced screening.

“This personalized, probabilistic approach to cancer diagnostics is more clinically informative and accurate than traditional binary (yes/no) tests,” said John McDonald, professor emeritus in the School of Biological Sciences, founding director of the ICRC, and the study’s corresponding author. “It represents a promising new direction in the early detection of ovarian cancer, and perhaps other cancers as well.”

Related Links:
Georgia Tech

New
Platinum Member
Flu SARS-CoV-2 Combo Test
OSOM® Flu SARS-CoV-2 Combo Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article
77 ELEKTRONIKA

Channels

Clinical Chemistry

view channel
Image: PhD student and first author Tarek Eissa has analyzed thousands of molecular fingerprints (Photo courtesy of Thorsten Naeser / MPQ / Attoworld)

Screening Tool Detects Multiple Health Conditions from Single Blood Drop

Infrared spectroscopy, a method using infrared light to study the molecular composition of substances, has been a foundational tool in chemistry for decades, functioning similarly to a molecular fingerprinting... Read more

Hematology

view channel
Image: The Truvian diagnostic platform combines clinical chemistry, immunoassay and hematology testing in a single run (Photo courtesy of Truvian Health)

Automated Benchtop System to Bring Blood Testing To Anyone, Anywhere

Almost all medical decisions are dependent upon laboratory test results, which are essential for disease prevention and the management of chronic illnesses. However, routine blood testing remains limited worldwide.... Read more

Immunology

view channel
Image: The blood test measures lymphocytes  to guide the use of multiple myeloma immunotherapy (Photo courtesy of 123RF)

Simple Blood Test Identifies Multiple Myeloma Patients Likely to Benefit from CAR-T Immunotherapy

Multiple myeloma, a type of blood cancer originating from plasma cells in the bone marrow, sees almost all patients experiencing a relapse at some stage. This means that the cancer returns even after initially... Read more

Microbiology

view channel
Image: Ultra-Rapid Antimicrobial Susceptibility Testing (uRAST) revolutionizing traditional antibiotic susceptibility testing (Photo courtesy of Seoul National University)

Ultra-Rapid Culture-Free Sepsis Test Reduces Testing Time from Days to Hours

Sepsis, a critical emergency condition, results from an overactive inflammatory response to pathogens like bacteria or fungi in the blood, leading to organ damage and the possibility of sudden death.... Read more

Pathology

view channel
Image: The AI model can distinguish different stages of DCIS from inexpensive and readily available breast tissue images (Photo courtesy of David A. Litman/Shutterstock)

AI Model Identifies Breast Tumor Stages Likely To Progress to Invasive Cancer

Ductal carcinoma in situ (DCIS) is a non-invasive type of tumor that can sometimes progress to a more lethal form of breast cancer and represents about 25% of all breast cancer cases. Between 30% and 50%... Read more

Industry

view channel
Image: Beckman Coulter will utilize the ALZpath pTau217 antibody to detect key biomarker for Alzheimer\'s disease on its DxI 9000 immunoassay analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter Licenses Alzpath's Proprietary P-tau 217 Antibody to Develop Alzheimer's Blood Test

Cognitive assessments have traditionally been the primary method for diagnosing Alzheimer’s disease, but this approach has its limitations as symptoms become apparent only after significant brain changes... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.