We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




AI-Based Blood Test Detects Ovarian Cancer With 93% Accuracy

By LabMedica International staff writers
Posted on 30 Jan 2024

Ovarian cancer, often termed the silent killer, typically presents no symptoms in its initial stages, leading to late detection when treatment becomes challenging. More...

The stark contrast in survival rates highlights the urgent need for early diagnosis: while late-stage ovarian cancer patients have a five-year survival rate of around 31% post-treatment, early detection and treatment can raise this rate to over 90%. Despite over three decades of research, developing an accurate early diagnostic test for ovarian cancer has proved challenging. This difficulty stems from the disease's molecular origins, where multiple pathways can lead to the same cancer type.

Scientists at the Georgia Tech Integrated Cancer Research Center (ICRC, Atlanta, GA, USA) have now made a breakthrough by integrating machine learning with blood metabolite information, developing a test that can detect ovarian cancer with 93% accuracy in their study group. This test outperforms existing detection methods, especially in identifying early-stage ovarian disease among women clinically considered normal. The researchers have created a novel diagnostic approach, utilizing a patient's metabolic profile to assign a more precise probability of the presence or absence of the disease.

Mass spectrometry, used to identify metabolites in blood through their mass and charge, faces a limitation: less than 7% of these metabolites in human blood have been chemically characterized. Thus, pinpointing specific molecular processes behind an individual's metabolic profile remains a challenge. Nevertheless, the team recognized the potential of using the presence of varying metabolites, as detected by mass spectrometry, to create accurate predictive models using machine learning. This approach is similar to using individual facial features for developing facial recognition algorithms.

In their innovative method, the researchers combined metabolomic profiles with machine learning classifiers, achieving 93% accuracy in a study involving 564 women from Georgia, North Carolina, Philadelphia, and Western Canada. This group included 431 active ovarian cancer patients and 133 women without the disease. Ongoing studies aim to explore the test's ability to detect very early-stage disease in symptom-free women. The vision for clinical application is a future where individuals with a metabolic profile indicating a low likelihood of cancer undergo annual monitoring, while those with scores suggesting a high probability of ovarian cancer receive more frequent monitoring or immediate referral for advanced screening.

“This personalized, probabilistic approach to cancer diagnostics is more clinically informative and accurate than traditional binary (yes/no) tests,” said John McDonald, professor emeritus in the School of Biological Sciences, founding director of the ICRC, and the study’s corresponding author. “It represents a promising new direction in the early detection of ovarian cancer, and perhaps other cancers as well.”

Related Links:
Georgia Tech


Gold Member
Immunochromatographic Assay
CRYPTO Cassette
Collection and Transport System
PurSafe Plus®
New
Silver Member
PCR Plates
Diamond Shell PCR Plates
New
Gold Member
Automated MALDI-TOF MS System
EXS 3000
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.