We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




AI-Based Blood Test Detects Ovarian Cancer With 93% Accuracy

By LabMedica International staff writers
Posted on 30 Jan 2024
Print article
Image: Micrograph of a mucinous ovarian tumor (Photo courtesy of National Institutes of Health)
Image: Micrograph of a mucinous ovarian tumor (Photo courtesy of National Institutes of Health)

Ovarian cancer, often termed the silent killer, typically presents no symptoms in its initial stages, leading to late detection when treatment becomes challenging. The stark contrast in survival rates highlights the urgent need for early diagnosis: while late-stage ovarian cancer patients have a five-year survival rate of around 31% post-treatment, early detection and treatment can raise this rate to over 90%. Despite over three decades of research, developing an accurate early diagnostic test for ovarian cancer has proved challenging. This difficulty stems from the disease's molecular origins, where multiple pathways can lead to the same cancer type.

Scientists at the Georgia Tech Integrated Cancer Research Center (ICRC, Atlanta, GA, USA) have now made a breakthrough by integrating machine learning with blood metabolite information, developing a test that can detect ovarian cancer with 93% accuracy in their study group. This test outperforms existing detection methods, especially in identifying early-stage ovarian disease among women clinically considered normal. The researchers have created a novel diagnostic approach, utilizing a patient's metabolic profile to assign a more precise probability of the presence or absence of the disease.

Mass spectrometry, used to identify metabolites in blood through their mass and charge, faces a limitation: less than 7% of these metabolites in human blood have been chemically characterized. Thus, pinpointing specific molecular processes behind an individual's metabolic profile remains a challenge. Nevertheless, the team recognized the potential of using the presence of varying metabolites, as detected by mass spectrometry, to create accurate predictive models using machine learning. This approach is similar to using individual facial features for developing facial recognition algorithms.

In their innovative method, the researchers combined metabolomic profiles with machine learning classifiers, achieving 93% accuracy in a study involving 564 women from Georgia, North Carolina, Philadelphia, and Western Canada. This group included 431 active ovarian cancer patients and 133 women without the disease. Ongoing studies aim to explore the test's ability to detect very early-stage disease in symptom-free women. The vision for clinical application is a future where individuals with a metabolic profile indicating a low likelihood of cancer undergo annual monitoring, while those with scores suggesting a high probability of ovarian cancer receive more frequent monitoring or immediate referral for advanced screening.

“This personalized, probabilistic approach to cancer diagnostics is more clinically informative and accurate than traditional binary (yes/no) tests,” said John McDonald, professor emeritus in the School of Biological Sciences, founding director of the ICRC, and the study’s corresponding author. “It represents a promising new direction in the early detection of ovarian cancer, and perhaps other cancers as well.”

Related Links:
Georgia Tech

Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Drug Detection Platform
ABSOLUDY Drug Detection Platform
New
Chagas Rapid Test
OnSite Chagas Ab Combo Rapid Test

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The new platelet-centric scoring system predicts platelet hyperreactivity and related risk of cardiovascular events (Photo courtesy of Shutterstock)

Blood Platelet Score Detects Previously Unmeasured Risk of Heart Attack and Stroke

Platelets, which are cell fragments circulating in the blood, play a critical role in clot formation to stop bleeding. However, in some individuals, platelets can become "hyperreactive," leading to excessive... Read more

Immunology

view channel
Image: The blood test measures lymphocytes  to guide the use of multiple myeloma immunotherapy (Photo courtesy of 123RF)

Simple Blood Test Identifies Multiple Myeloma Patients Likely to Benefit from CAR-T Immunotherapy

Multiple myeloma, a type of blood cancer originating from plasma cells in the bone marrow, sees almost all patients experiencing a relapse at some stage. This means that the cancer returns even after initially... Read more

Microbiology

view channel
Image: The Accelerate WAVE system delivers rapid AST directly from positive blood culture bottles (Photo courtesy of Accelerate Diagnostics)

Rapid Diagnostic System to Deliver Same-Shift Antibiotic Susceptibility Test Results

The World Health Organization estimates that sepsis impacts around 49 million people worldwide each year, resulting in roughly 11 million deaths, with about 1.32 million of these deaths directly linked... Read more

Pathology

view channel
Image: The ChatGPT-like AI model can diagnose cancer, guide treatment choice, predict survival across multiple cancer types (Photo courtesy of 123RF)

AI Tool Diagnoses Cancer, Guides Treatment and Predicts Survival Across Multiple Cancer Types

Current artificial intelligence (AI) models are typically specialized, designed for specific tasks like detecting cancer or predicting tumor genetics, and are limited to a few cancer types.... Read more

Industry

view channel
Image: Roche has expanded its digital pathology open environment with more than 20 AI algorithms (Photo courtesy of Roche)

Roche Expands Digital Pathology Open Environment with Integration of Advanced AI Algorithms from New Collaborators

Roche (Basel, Switzerland) has expanded its digital pathology open environment by integrating over 20 advanced artificial intelligence (AI) algorithms from eight new collaborators. These strategic collaborations... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.