Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




AI-Based Blood Test Detects Ovarian Cancer With 93% Accuracy

By LabMedica International staff writers
Posted on 30 Jan 2024

Ovarian cancer, often termed the silent killer, typically presents no symptoms in its initial stages, leading to late detection when treatment becomes challenging. More...

The stark contrast in survival rates highlights the urgent need for early diagnosis: while late-stage ovarian cancer patients have a five-year survival rate of around 31% post-treatment, early detection and treatment can raise this rate to over 90%. Despite over three decades of research, developing an accurate early diagnostic test for ovarian cancer has proved challenging. This difficulty stems from the disease's molecular origins, where multiple pathways can lead to the same cancer type.

Scientists at the Georgia Tech Integrated Cancer Research Center (ICRC, Atlanta, GA, USA) have now made a breakthrough by integrating machine learning with blood metabolite information, developing a test that can detect ovarian cancer with 93% accuracy in their study group. This test outperforms existing detection methods, especially in identifying early-stage ovarian disease among women clinically considered normal. The researchers have created a novel diagnostic approach, utilizing a patient's metabolic profile to assign a more precise probability of the presence or absence of the disease.

Mass spectrometry, used to identify metabolites in blood through their mass and charge, faces a limitation: less than 7% of these metabolites in human blood have been chemically characterized. Thus, pinpointing specific molecular processes behind an individual's metabolic profile remains a challenge. Nevertheless, the team recognized the potential of using the presence of varying metabolites, as detected by mass spectrometry, to create accurate predictive models using machine learning. This approach is similar to using individual facial features for developing facial recognition algorithms.

In their innovative method, the researchers combined metabolomic profiles with machine learning classifiers, achieving 93% accuracy in a study involving 564 women from Georgia, North Carolina, Philadelphia, and Western Canada. This group included 431 active ovarian cancer patients and 133 women without the disease. Ongoing studies aim to explore the test's ability to detect very early-stage disease in symptom-free women. The vision for clinical application is a future where individuals with a metabolic profile indicating a low likelihood of cancer undergo annual monitoring, while those with scores suggesting a high probability of ovarian cancer receive more frequent monitoring or immediate referral for advanced screening.

“This personalized, probabilistic approach to cancer diagnostics is more clinically informative and accurate than traditional binary (yes/no) tests,” said John McDonald, professor emeritus in the School of Biological Sciences, founding director of the ICRC, and the study’s corresponding author. “It represents a promising new direction in the early detection of ovarian cancer, and perhaps other cancers as well.”

Related Links:
Georgia Tech


Gold Member
Serological Pipets
INTEGRA Serological Pipets
Portable Electronic Pipette
Mini 96
New
HBV DNA Test
GENERIC HBV VIRAL LOAD VER 2.0
New
Autoimmune Liver Diseases Assay
Microblot-Array Liver Profile Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The study highlights the potential of cCAFs as a biomarker for early diagnosis and prognosis (H J Woo et al., Analytical Chemistry (2025). DOI: 10.1021/acs.analchem.5c02154)

Simultaneous Cell Isolation Technology Improves Cancer Diagnostic Accuracy

Accurate cancer diagnosis remains a challenge, as liquid biopsy techniques often fail to capture the complexity of tumor biology. Traditional systems for isolating circulating tumor cells (CTCs) vary in... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.