We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Gene Panel Predicts Likelihood of Favorable Response by Multiple Myeloma Patients to Selinexor Treatment

By LabMedica International staff writers
Posted on 16 Jun 2022
Print article
Image: Histopathological image of multiple myeloma in a bone marrow aspirate (Photo courtesy of Wikimedia Commons)
Image: Histopathological image of multiple myeloma in a bone marrow aspirate (Photo courtesy of Wikimedia Commons)

A novel three-gene expression signature has been identified that can be used to predict the response of multiple myeloma (MM) patients to the chemotherapeutic drug selinexor.

Selinexor is a selective inhibitor of nuclear export used as an anti-cancer medication. It works by blocking the action of exportin 1 and thus preventing the transport of several proteins involved in cancer-cell growth from the cell nucleus to the cytoplasm, which ultimately arrests the cell cycle and leads to apoptosis.

The most common side effects of selinexor treatment include nausea, vomiting, decreased appetite, weight loss, diarrhea, tiredness, thrombocytopenia (low blood-platelet counts), anemia, low levels of white blood cells, and hyponatraemia (low blood sodium levels). Due to these relatively severe side effects, it is important to identify patients who will respond positively and, thereby, potentially expand the use of the drug. However, there currently are no known genomic biomarkers or assays to help select MM patients at higher likelihood of favorable response to selinexor.

Investigators at the Mount Sinai School of Medicine (New York, NY, USA) sought to discover relevant biomarkers by performing RNA sequencing, differential gene expression, and pathway analysis on CD138+ cells from the bone marrow of 100 patients with MM. The three-gene signature (WNT10A, DUSP1, and ETV7) identified in the first part of the study was validated in 64 patients from the Selinexor Treatment of Refractory Myeloma (STORM) cohort of triple-class refractory MM and additionally in an external cohort of 35 patients treated in a real-world setting outside of clinical trials.

Results revealed that the three-gene signature correlated with both depth and duration of response to selinexor in MM, and that it also was validated in a different tumor type using a cohort of pre-treatment tumors from patients with recurrent glioblastoma.

Senior author Dr. Samir Parekh, professor of medicine, hematology, and medical oncology at the Mount Sinai School of Medicine, said, “Our findings provide the basis for improving patient selection for targeted agents using a small panel of genes to guide precise application of these drugs in real world scenarios, including relapse following CAR-T, an increasingly important clinical challenge in myeloma.”

The study was published in the June 15, 2022, online edition of the journal JCO Precision Oncology.

Related Links:
Mount Sinai School of Medicine

Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Centrifuge
Hematocrit Centrifuge 7511M4
New
Troponin I Test
Quidel Triage Troponin I Test

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.