We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Biomarker Detects Active Melanoma and Predicts Survival

By LabMedica International staff writers
Posted on 25 Jul 2018
Print article
Image: A malignant melanoma of the skin (Photo courtesy of National Cancer Institute).
Image: A malignant melanoma of the skin (Photo courtesy of National Cancer Institute).
Melanoma is the most dangerous form of skin cancer, these cancerous growths develop when unrepaired DNA damage to skin cells, which is most often caused by ultraviolet radiation from sunshine or tanning beds, triggers mutations (genetic defects) that lead the skin cells to multiply rapidly and form malignant tumors.

A substantial number of melanoma patients develop local or metastatic recurrence, and early detection of these is vital to maximize benefit from new therapies such as immune checkpoints or inhibitors of specific genes. If melanoma is recognized and treated early, it is almost always curable, but if it is not, the cancer can advance and spread to other parts of the body, where it becomes hard to treat and can be fatal.

Clinical Oncologists and their colleagues at the University of Sheffield (Sheffield, UK) explored the use of novel DNA copy-number profiles in circulating cell-free DNA (cfDNA) as a potential biomarker of active disease and survival. Melanoma patients were recruited from oncology and dermatology clinics, and cfDNA was isolated from stored blood plasma. The team used low-coverage whole-genome sequencing, and created copy-number profiles from cfDNA from 83 melanoma patients, 44 of who had active disease.

The scientists found that the copy-number aberration score (CNAS) was a good discriminator of active disease (odds ratio = 3.1), and CNAS above or below the 75th percentile remained a significant discriminator in multivariable analysis for active disease. Additionally, mortality was higher in those with CNASs above the 75th percentile than in those with lower scores (Hazard Ratio (HR) =3.4) adjusting for stage of disease, disease status (active or resected), BRAF status, and cfDNA concentration.

The authors concluded that their study demonstrates the potential of a de novo approach utilizing copy-number profiling of cfDNA as a biomarker of active disease and survival in melanoma. Longitudinal analysis of copy-number profiles as an early marker of relapsed disease is warranted. The study was published in June 2018 in the journal Clinical Chemistry.

Related Links:
University of Sheffield

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.