We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Small RNAs in Blood May Reveal Heart Injury

By LabMedica International staff writers
Posted on 14 Aug 2014
An increase in certain micro ribonucleic acids (RNAs) circulating in the blood are linked with injury to cardiac muscle and these molecules might provide the basis for a more sensitive diagnostic tool than those currently available.

These small RNA molecules are encoded in the genome, and they fine-tune the expression of genes in the cells that produce them, in addition they also become evident in the blood stream, outside the protective environment of the cell, but at extremely low levels. More...


Scientists at The Rockefeller University (New York, NY, USA) isolated RNA from left ventricular tissue samples from a total of 47 subjects: 21 patients with advanced heart failure (HF) due to dilated cardiomyopathy (DCM), 13 patients with advanced HF due to ischemic cardiomyopathy (ICM), 8 individuals without heart disease (NFs), and 5 fetuses (FETs). They compared their microRNA results with those of the protein cardiac troponin currently used to diagnose injury to heart muscle. This protein occurs within healthy heart muscle cells, but when injured, these cells leak cardiac troponin out into the blood stream, causing its levels to spike in circulation.

The RNA concentration and purity was determined by NanoDrop micro-volume UV- spectrophotometry (Thermo Scientific; Waltham, MA, USA) or using the fluorometric Molecular Probes Qubit RNA Assay (Life Technologies; Carlsbad, CA, USA). The RNA integrity of the tissue RNA samples was determined by a microchip based capillary electrophoresis (Agilent Bioanalyzer 2100; Santa Clara, CA, USA). Cardiac troponin I (cTnI) and B-type natriuretic peptide (BNP) were both measured by a chemiluminescent microparticle immunoassay performed for quantitative determination of BNP in plasma or cTnI in serum using the ARCHITECT iSystem (Abbott; Abbott Park, IL, USA).

The circulating small RNA profile was dominated by microRNAs, and fragments of transfer RNAs (tRNAs) and small cytoplasmic RNAs. Heart- and muscle-specific circulating miRNAs (myomirs) increased up to 140-fold in advanced HF, which coincided with a similar increase in cardiac troponin I (cTnI) protein, the established marker for heart injury. In stable HF, circulating miRNAs showed less than a five-fold difference compared with normal, and myomir and cTnI levels were only captured near the detection limit. These findings provide the underpinning for miRNA-based therapies and emphasize the usefulness of circulating miRNAs as biomarkers for heart injury, performing similar to established diagnostic protein biomarkers.

Thomas Tuschl, PhD, the lead author of the study said, “RNA sequencing can capture a wide spectrum of microRNAs and other potentially interesting RNA molecules from a tiny sample. This opens the possibility of finding many promising biomarkers like those we found from heart muscle, leading to a more universal test then the current monitoring of single proteins. Some technological barriers must still be overcome before tests based on RNA biomarkers like these can be brought into the clinic, but the potential is there for an entirely new type of clinically important diagnostic tool.” The study was published on July 29, 2014, in the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS).

Related Links:

The Rockefeller University
Thermo Scientific
Life Technologies




New
Gold Member
Ketosis and DKA Test
D-3-Hydroxybutyrate (Ranbut) Assay
POC Helicobacter Pylori Test Kit
Hepy Urease Test
ESR Analyzer
TEST1 2.0
Gel Cards
DG Gel Cards
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Research has linked platelet aggregation in midlife blood samples to early brain markers of Alzheimer’s (Photo courtesy of Shutterstock)

Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk

Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more

Microbiology

view channel
Image: The SMART-ID Assay delivers broad pathogen detection without the need for culture (Photo courtesy of Scanogen)

Rapid Assay Identifies Bloodstream Infection Pathogens Directly from Patient Samples

Bloodstream infections in sepsis progress quickly and demand rapid, precise diagnosis. Current blood-culture methods often take one to five days to identify the pathogen, leaving clinicians to treat blindly... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.