We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Rapid Molecular Testing Enables Faster, More Targeted Antibiotic Treatment for Pneumonia

By LabMedica International staff writers
Posted on 12 Mar 2024
Print article
Image: The use of rapid molecular testing in the ED can aid targeted antibiotic treatment for pneumonia (Photo courtesy of Tatiana Shepeleva/Shutterstock)
Image: The use of rapid molecular testing in the ED can aid targeted antibiotic treatment for pneumonia (Photo courtesy of Tatiana Shepeleva/Shutterstock)

Pneumonia, an inflammation of the lungs typically caused by viral or bacterial infection, is a leading infectious disease worldwide, contributing significantly to global mortality and morbidity. Community-acquired pneumonia (CAP) refers to pneumonia contracted outside healthcare settings. While culture-based methods have been the norm for diagnosing bacterial pneumonia, these often detect pathogens only 20% to 40% of the time and yield slower results, hindering early, precise antibiotic therapy. Now, a randomized controlled trial (RCT) has demonstrated that utilizing rapid molecular testing in emergency departments (ED) can lead to more accurately targeted antibiotic treatment for pneumonia.

In the trial conducted at Haukeland University Hospital (HUS, Bergen, Norway), adult patients presenting with CAP symptoms in the ED were randomly divided into two groups. One group received rapid syndromic polymerase chain reaction (PCR) testing with the BioFire FilmArray Pneumonia plus panel (FAP plus), which identifies 27 bacterial and viral respiratory pathogens. The other group underwent standard microbiologic testing methods including blood culture, pneumococcal urine test, and an in-house PCR test. The main goals were to assess the delivery of pathogen-specific treatment based on test results and the timeframe for providing such treatment within 48 hours of randomization. Pathogen-specific treatment was categorized as a change, continuation, or discontinuation of antibiotic treatment depending on the results.

The results showed that patients who underwent rapid syndromic PCR testing were more likely to receive pathogen-specific antibiotic treatments compared to those who had standard microbiologic testing. Additionally, they received appropriate treatment more quickly. These findings suggest that rapid syndromic PCR tests could potentially enhance or even replace traditional culture-based diagnostic methods for lower respiratory infections. While the trial was limited to a single hospital setting and had a small sample size, the researchers believe the results are applicable to similar hospital environments.

"We sought to reduce the time to provision of pathogen-directed treatment, potentially decreasing unnecessary or broad-spectrum antibiotic use and fostering antimicrobial stewardship," stated the researchers. "Future research should continue to explore innovative approaches to improving the diagnosis and management of respiratory infections, such as incorporating clinical decision support tools and antimicrobial stewardship programs into routine practice."

Related Links:
HUS

New
Platinum Member
Flu SARS-CoV-2 Combo Test
OSOM® Flu SARS-CoV-2 Combo Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Hemoglobin Testing System
VARIANTnbs

Print article
77 ELEKTRONIKA

Channels

Clinical Chemistry

view channel
Image: PhD student and first author Tarek Eissa has analyzed thousands of molecular fingerprints (Photo courtesy of Thorsten Naeser / MPQ / Attoworld)

Screening Tool Detects Multiple Health Conditions from Single Blood Drop

Infrared spectroscopy, a method using infrared light to study the molecular composition of substances, has been a foundational tool in chemistry for decades, functioning similarly to a molecular fingerprinting... Read more

Molecular Diagnostics

view channel
Image: Researchers have found the first evidence of testing for the alpha-synuclein protein in blood samples via seed amplification assay (Photo courtesy of Shutterstock)

Blood Test to Detect Alpha-Synuclein Protein Could Revolutionize Parkinson's Disease Diagnostics

Currently, Parkinson's disease (PD) is identified through clinical diagnosis, typically at a later stage in the disease's progression. There is a pressing need for an objective and quantifiable biomarker... Read more

Hematology

view channel
Image: The Truvian diagnostic platform combines clinical chemistry, immunoassay and hematology testing in a single run (Photo courtesy of Truvian Health)

Automated Benchtop System to Bring Blood Testing To Anyone, Anywhere

Almost all medical decisions are dependent upon laboratory test results, which are essential for disease prevention and the management of chronic illnesses. However, routine blood testing remains limited worldwide.... Read more

Immunology

view channel
Image: The blood test measures lymphocytes  to guide the use of multiple myeloma immunotherapy (Photo courtesy of 123RF)

Simple Blood Test Identifies Multiple Myeloma Patients Likely to Benefit from CAR-T Immunotherapy

Multiple myeloma, a type of blood cancer originating from plasma cells in the bone marrow, sees almost all patients experiencing a relapse at some stage. This means that the cancer returns even after initially... Read more

Pathology

view channel
Image: The AI model can distinguish different stages of DCIS from inexpensive and readily available breast tissue images (Photo courtesy of David A. Litman/Shutterstock)

AI Model Identifies Breast Tumor Stages Likely To Progress to Invasive Cancer

Ductal carcinoma in situ (DCIS) is a non-invasive type of tumor that can sometimes progress to a more lethal form of breast cancer and represents about 25% of all breast cancer cases. Between 30% and 50%... Read more

Industry

view channel
Image: Beckman Coulter will utilize the ALZpath pTau217 antibody to detect key biomarker for Alzheimer\'s disease on its DxI 9000 immunoassay analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter Licenses Alzpath's Proprietary P-tau 217 Antibody to Develop Alzheimer's Blood Test

Cognitive assessments have traditionally been the primary method for diagnosing Alzheimer’s disease, but this approach has its limitations as symptoms become apparent only after significant brain changes... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.