We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Laser Light Method Uses AI-Assisted Imaging to Identify Bacteria in Fluids

By LabMedica International staff writers
Posted on 06 Mar 2023
Print article
Image: Details of the printed dots on a gold-coated slide (Photo courtesy of Stanford University)
Image: Details of the printed dots on a gold-coated slide (Photo courtesy of Stanford University)

The commonly used traditional culturing techniques often require several hours or even days for completion. Now, a revolutionary approach promises to deliver faster, more precise, and cost-effective microbial assays of almost any fluid one wishes to test for microbes in an instant.

Scientists at Stanford University (Stanford, CA, USA) have created an innovative adaptation of the technology in an old inkjet printer and combined it with AI-assisted imaging to develop a faster, cheaper way to spot bacteria in blood, wastewater, and more. The method involves shining a laser on a drop of blood, mucus, or wastewater, and then using the light reflecting back to positively identify bacteria in the sample. The new test can be carried out within minutes and offers hope for improved and rapid detection of infections, more effective utilization of antibiotics, safer food products, enhanced environmental surveillance, and speedier drug development processes.

The novelty of this discovery lies not in the fact that bacteria possess unique spectral fingerprints, which has been established for years, but rather in how the research team has managed to extract these spectra amidst the blinding array of light emanating from every sample. A single milliliter of blood can contain billions of cells, merely a tiny fraction of which may be microbes. Therefore, the challenge was to identify a way to exclusively distinguish and amplify the light emanating just from the bacteria. The team pursued different scientific approaches, blending a decades-old computing technology - the inkjet printer - with two of the most advanced technologies of our times - artificial intelligence and nanoparticles.

The researchers found a solution to the difficulties of handling biological samples by modifying the printer to use acoustic pulses in order to put samples to paper. This method results in each printed blood dot being just two trillionths of a liter in volume, making them incredibly small - over a billion times smaller than a raindrop. Due to their tiny size, these droplets may contain just a few dozen cells. To enhance the bacteria detection process, the researchers infused the samples with gold nanorods, which act like antennas that draw laser light towards any present bacteria and amplify the signal to 1500 times its original strength. With appropriate isolation and amplification, the bacterial spectra clearly stand out for identification. The researchers also utilized machine learning to analyze the spectra of each printed dot and identify any telltale signatures of bacteria in the sample.

“We can find out not just that bacteria are present, but specifically which bacteria are in the sample – E. coli, Staphylococcus, Streptococcus, Salmonella, anthrax, and more,” said Jennifer Dionne, an associate professor of materials science and engineering and, by courtesy, of radiology at Stanford University. “Every microbe has its own unique optical fingerprint. It’s like the genetic and proteomic code scribbled in light.”

Related Links:
Stanford University

New
Platinum Member
Flu SARS-CoV-2 Combo Test
OSOM® Flu SARS-CoV-2 Combo Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article
77 ELEKTRONIKA

Channels

Clinical Chemistry

view channel
Image: PhD student and first author Tarek Eissa has analyzed thousands of molecular fingerprints (Photo courtesy of Thorsten Naeser / MPQ / Attoworld)

Screening Tool Detects Multiple Health Conditions from Single Blood Drop

Infrared spectroscopy, a method using infrared light to study the molecular composition of substances, has been a foundational tool in chemistry for decades, functioning similarly to a molecular fingerprinting... Read more

Molecular Diagnostics

view channel
Image: Researchers have found the first evidence of testing for the alpha-synuclein protein in blood samples via seed amplification assay (Photo courtesy of Shutterstock)

Blood Test to Detect Alpha-Synuclein Protein Could Revolutionize Parkinson's Disease Diagnostics

Currently, Parkinson's disease (PD) is identified through clinical diagnosis, typically at a later stage in the disease's progression. There is a pressing need for an objective and quantifiable biomarker... Read more

Hematology

view channel
Image: The Truvian diagnostic platform combines clinical chemistry, immunoassay and hematology testing in a single run (Photo courtesy of Truvian Health)

Automated Benchtop System to Bring Blood Testing To Anyone, Anywhere

Almost all medical decisions are dependent upon laboratory test results, which are essential for disease prevention and the management of chronic illnesses. However, routine blood testing remains limited worldwide.... Read more

Immunology

view channel
Image: The blood test measures lymphocytes  to guide the use of multiple myeloma immunotherapy (Photo courtesy of 123RF)

Simple Blood Test Identifies Multiple Myeloma Patients Likely to Benefit from CAR-T Immunotherapy

Multiple myeloma, a type of blood cancer originating from plasma cells in the bone marrow, sees almost all patients experiencing a relapse at some stage. This means that the cancer returns even after initially... Read more

Pathology

view channel
Image: The AI model can distinguish different stages of DCIS from inexpensive and readily available breast tissue images (Photo courtesy of David A. Litman/Shutterstock)

AI Model Identifies Breast Tumor Stages Likely To Progress to Invasive Cancer

Ductal carcinoma in situ (DCIS) is a non-invasive type of tumor that can sometimes progress to a more lethal form of breast cancer and represents about 25% of all breast cancer cases. Between 30% and 50%... Read more

Industry

view channel
Image: Beckman Coulter will utilize the ALZpath pTau217 antibody to detect key biomarker for Alzheimer\'s disease on its DxI 9000 immunoassay analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter Licenses Alzpath's Proprietary P-tau 217 Antibody to Develop Alzheimer's Blood Test

Cognitive assessments have traditionally been the primary method for diagnosing Alzheimer’s disease, but this approach has its limitations as symptoms become apparent only after significant brain changes... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.