We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Laser Light Method Uses AI-Assisted Imaging to Identify Bacteria in Fluids

By LabMedica International staff writers
Posted on 06 Mar 2023
Print article
Image: Details of the printed dots on a gold-coated slide (Photo courtesy of Stanford University)
Image: Details of the printed dots on a gold-coated slide (Photo courtesy of Stanford University)

The commonly used traditional culturing techniques often require several hours or even days for completion. Now, a revolutionary approach promises to deliver faster, more precise, and cost-effective microbial assays of almost any fluid one wishes to test for microbes in an instant.

Scientists at Stanford University (Stanford, CA, USA) have created an innovative adaptation of the technology in an old inkjet printer and combined it with AI-assisted imaging to develop a faster, cheaper way to spot bacteria in blood, wastewater, and more. The method involves shining a laser on a drop of blood, mucus, or wastewater, and then using the light reflecting back to positively identify bacteria in the sample. The new test can be carried out within minutes and offers hope for improved and rapid detection of infections, more effective utilization of antibiotics, safer food products, enhanced environmental surveillance, and speedier drug development processes.

The novelty of this discovery lies not in the fact that bacteria possess unique spectral fingerprints, which has been established for years, but rather in how the research team has managed to extract these spectra amidst the blinding array of light emanating from every sample. A single milliliter of blood can contain billions of cells, merely a tiny fraction of which may be microbes. Therefore, the challenge was to identify a way to exclusively distinguish and amplify the light emanating just from the bacteria. The team pursued different scientific approaches, blending a decades-old computing technology - the inkjet printer - with two of the most advanced technologies of our times - artificial intelligence and nanoparticles.

The researchers found a solution to the difficulties of handling biological samples by modifying the printer to use acoustic pulses in order to put samples to paper. This method results in each printed blood dot being just two trillionths of a liter in volume, making them incredibly small - over a billion times smaller than a raindrop. Due to their tiny size, these droplets may contain just a few dozen cells. To enhance the bacteria detection process, the researchers infused the samples with gold nanorods, which act like antennas that draw laser light towards any present bacteria and amplify the signal to 1500 times its original strength. With appropriate isolation and amplification, the bacterial spectra clearly stand out for identification. The researchers also utilized machine learning to analyze the spectra of each printed dot and identify any telltale signatures of bacteria in the sample.

“We can find out not just that bacteria are present, but specifically which bacteria are in the sample – E. coli, Staphylococcus, Streptococcus, Salmonella, anthrax, and more,” said Jennifer Dionne, an associate professor of materials science and engineering and, by courtesy, of radiology at Stanford University. “Every microbe has its own unique optical fingerprint. It’s like the genetic and proteomic code scribbled in light.”

Related Links:
Stanford University

New
Platinum Supplier
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
New
Gold Supplier
D-Dimer Test
Epithod 616 D-Dimer Kit
New
Ferritin Test
Ferritin
New
Microscope
M250 Series

Print article
GLOBETECH PUBLISHING LLC

Channels

Clinical Chemistry

view channel
Image: The new assays are designed to run on the B•R•A•H•M•S KRYPTOR compact PLUS clinical chemistry analyzer (Photo courtesy of Thermo Fisher)

Breakthrough Immunoassays to Aid in Risk Assessment of Preeclampsia

Preeclampsia is a life-threatening blood pressure condition that can arise during pregnancy and the postpartum phase. This severe pregnancy complication is a primary cause of maternal and fetal mortality... Read more

Molecular Diagnostics

view channel
Image: The ClarityDX Prostate test can reduce unnecessary prostate biopsies by up to 35% (Photo courtesy of Nanostics)

Innovative Blood Test to Revolutionize Prostate Cancer Detection and Reduce Invasive Biopsies

One in six men will receive a prostate cancer diagnosis during their lives. Thankfully, if caught early, prostate cancer is highly treatable. However, the existing screening process has its limitations.... Read more

Hematology

view channel
Image: The latest FDA clearance has finally brought HemoScreen to its full potential as a true POC hematology analyzer (Photo courtesy of PixCell)

True POC Hematology Analyzer with Direct Capillary Sampling Enhances Ease-of-Use and Testing Throughput

An innovative 5-part differential Complete Blood Count (CBC) analyzer with direct capillary sampling capability significantly simplifies blood sampling and minimizes the pre-analytical process.... Read more

Immunology

view channel
Image: A new test could detect the body’s adaptive immune response to viruses (Photo courtesy of 123RF)

Predictive T-Cell Test Detects Immune Response to Viruses Even Before Antibodies Form

The adaptive immune system is an incredible defense mechanism that allows the human body to identify and mount targeted responses against specific pathogens. T-Cells, a special kind of white blood cell,... Read more

Pathology

view channel
Image: A new microscopy method detects treatment-resistant cancer cells early (Photo courtesy of 123RF)

New Rapid-Live Screening Microscopy Technique Enables Early Detection of Treatment-Resistant Cancer Cells

Chemotherapy serves as an effective tool in the fight against cancer, yet some cancer cells can evade treatment by going into a dormant state known as senescence. These so-called therapy-induced senescent... Read more

Technology

view channel
Image: A new electrochemical device can quickly and inexpensively identify people at greatest risk for osteoporosis (Photo courtesy of ACS Central Science, 2023)

Electrochemical Device Identifies People at Higher Risk for Osteoporosis Using Single Blood Drop

With the global increase in life expectancy, the incidence of age-related conditions like osteoporosis is increasing. Osteoporosis, affecting around 200 million individuals worldwide, has a higher incidence... Read more

Industry

view channel
Image: AACC Middle East is a two-day conference that brings the latest in laboratory medicine to the Middle East region (Photo courtesy of ADLM)

AACC Middle East 2023 to Explore Latest Trends in Clinical Pathology and Laboratory Medicine

The AACC Middle East Conference and Exposition will be held by the Association for Diagnostics & Laboratory Medicine (ADLM - formerly AACC, Washington, DC, USA) in partnership with Life Dx (Abu Dhabi,... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.