We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Flow Cytometry Employed in Diagnosing Male Urethritis

By LabMedica International staff writers
Posted on 17 Dec 2020
Print article
Image: The UF-500i fully automated urine particle analyzer (Photo courtesy of Sysmex Corporation).
Image: The UF-500i fully automated urine particle analyzer (Photo courtesy of Sysmex Corporation).
According to the established guidelines, diagnosis of non-gonococcal urethritis should be confirmed by demonstrating polymorphonuclear leukocytes from the anterior urethra using a Gram-stained (GSS) or methylene blue-stained urethral smear.

There are several methods for detecting these infections. In recent years, new technologies have emerged in the field of urinalysis methodology, offering quick and standardized opportunities in everyday clinical practice. However, there is only limited information about how to use flow cytometry in diagnosing male urethritis.

Medical Andrologists and their colleagues at Tartu University Hospital (Tartu, Estonia) recruited 306 male patients with infectious urethritis caused by Chlamydia trachomatis, Neisseria gonorrhoeae, Mycoplasma genitalium and/or Trichomonas vaginalis. The control group consisted of 192 patients without uro-genital complaints, negative tests for C. trachomatis, N. gonorrhoeae, M. genitalium and T. vaginalis from first-voided urine and no inflammation in first-voided urine, mid-stream urine and urine after prostate massage.

The concentration and total count of white blood cells and bacteria in urine were analyzed using urine flow cytometry. The analyses were performed using fully automated urine particle analyzer Sysmex UF-500i (Sysmex Corporation, Kobe, Japan). Urethritis-associated sexually transmitted infections (STIs were detected from the first-voided urine using a PCR method: C. trachomatis and N. gonorrhoeae DNA by cobas 4800 CT/NG Test (Roche Diagnostics, Risch-Rotkreuz, Switzerland); M. genitalium DNA /Mycoplasma genitalium Real-TM; T. vaginalis DNA by Trichomonas vaginalis Real-TM (Sacace Biotehnologies, Como, Italy).

The investigators reported that the most prevalent infection was chlamydia (64.1%), followed by Mycoplasma genitalium (20.9%), gonorrhoea (7.8%) and trichomoniasis (1.6%). Gonorrhoea caused the highest flow-cytometric leucocyte/bacteria count, followed by chlamydia and Mycoplasma genitalium. Trichomonas vaginalis showed nearly absent inflammation in first-voided urine. Using an empiric flow-cytometry diagnostic threshold for urethritis in first-voided urine (leucocytes ≥ 15/μL and bacteria ≥ 20/μL), the total calculated sensitivity was over 90%. However, when applying such criteria for deciding whether to perform first-voided urine PCR for C. trachomatis, N. gonorrhoeae, M. genitalium and T. vaginalis or not, the team could miss 23 cases with infectious urethritis that makes up 7.5% of all proven cases.

The authors concluded that C. trachomatis (CT) is the most prevalent urethritis-associated STI among the men consulting an andrologist, followed by M. genitalium (MG). A strong inflammatory reaction accompanied by high bacterial concentration in first-voided urine as revealed by flow cytometry is highly predictive of NG infection (sensitivity >95%), while the sensitivity of this method remains slightly lower for CT and MG (>92%) and very low for infrequently occurring T. vaginalis. The study was published on December 2 2020 in the journal PLOS ONE.

Related Links:
Tartu University Hospital
Sysmex Corporation
Roche Diagnostics
Sacace Biotehnologies


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.