We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Autonomous Microchannel Analyzer Combines with Smartphone for Off-Site Disease Diagnostics

By LabMedica International staff writers
Posted on 18 Feb 2020
A novel microchannel capillary flow assay platform for detection of pathogenic microorganisms or other antigens combines with a smartphone for display, data transfer, storage, and analysis.

Investigators at the University of Cincinnati (OH, USA) built the microchannel capillary flow assay (MCFA) platform to perform chemiluminescence based ELISA tests with lyophilized chemiluminescent reagents. More...
The MCFA platform exploits the ultra-high sensitivity of chemiluminescent detection while eliminating the shortcomings associated with liquid reagent handling, control of assay sequence, and user intervention.

Functionally designed microchannels along with adequate hydrophilicity provided by the saliva sample produce a sequential flow of assay reagents, and the device autonomously performs the ultra-high sensitive chemiluminescence based ELISA. An attached smartphone for display, data transfer, storage and analysis, as well as the source of power, enabled the development of a point-of-care-testing (POCT) analyzer for disease diagnostics.

The current report described the use of the MCFA device for detection of the malaria biomarker PfHRP2. For this antigen a limit of detection (LOD) of eight nanograms per milliliter was achieved, which is sensitive enough to detect active malarial infection.

Furthermore, the investigators assert that the device can be adapted to diagnose other infectious diseases such as coronavirus, HIV or Lyme disease or innumerable other health conditions such as depression and anxiety.

"The performance is comparable to laboratory tests. The cost is cheaper. And it is user-friendly," said senior author Dr. Chong Ahn, distinguished university research professor at the University of Cincinnati. "We wanted to make it simple so anyone could use it without training or support. Right now it takes several hours or even days to diagnose in a lab, even when people are showing symptoms. The disease can spread."

The MCFA device was described in the January 27, 2020, online edition of the journal Microsystems & Nanoengineering.

Related Links:
University of Cincinnati


Gold Member
Respiratory Syncytial Virus Test
OSOM® RSV Test
POC Helicobacter Pylori Test Kit
Hepy Urease Test
CBM Analyzer
Complete Blood Morphology (CBM) Analyzer
6 Part Hematology Analyzer with RET + IPF
Mispa HX 88
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.