We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
LGC Clinical Diagnostics

BD DIAGNOSTIC SYSTEMS

BD Diagnostics manufactures and markets medical supplies and devices and diagnostic systems that include cellular ana... read more Featured Products: More products

Download Mobile App




POC Diagnostic Differentiates Ebola from Endemic Febrile Diseases

By LabMedica International staff writers
Posted on 24 Dec 2018
Print article
Image: Digitally colorized scanning electron microscopic (SEM) image depicts numerous filamentous Ebola virus particles (red) budding from a chronically infected VERO E6 cell (blue). New technology can distinguish Ebola infected patients from other endemic febrile diseases (Photo courtesy of National Institute of Allergy and Infectious Diseases).
Image: Digitally colorized scanning electron microscopic (SEM) image depicts numerous filamentous Ebola virus particles (red) budding from a chronically infected VERO E6 cell (blue). New technology can distinguish Ebola infected patients from other endemic febrile diseases (Photo courtesy of National Institute of Allergy and Infectious Diseases).
Hemorrhagic fever outbreaks such as Ebola are difficult to detect and control because of the lack of low-cost, easily deployable diagnostics and because initial clinical symptoms mimic other endemic diseases such as malaria.

Current molecular diagnostic methods such as polymerase chain reaction (PCR) require trained personnel and laboratory infrastructure, hindering diagnostics at the point of need. Although rapid tests such as lateral flow can be broadly deployed, they are typically not well suited for differentiating among multiple diseases presenting with similar symptoms.

An international team of scientists cooperating with the Becton, Dickinson and Company (Research Triangle Park, NC, USA) developed a portable test for Ebola designed for use in remote settings. The platform, which is based on a protein detection technology known as Surface-enhanced Raman spectroscopy (SERS), works by adding a small sample of blood to pre-packaged vials containing dried, temperature-stable chemicals. The vial is mixed for 30 minutes before being transferred to a reader that detects light signals associated with viral particles. The reader then delivers results on whether the patient is infected with Ebola, Lassa or malaria in 30 seconds.

After successfully testing their device in monkey models of Ebola, the team conducted field tests in Senegal and Guinea using 190 blood samples from Ebola patients that were gathered during the 2014 outbreak, 163 samples from malaria patients and 233 samples from non-infected individuals. The test correctly detected the presence of Ebola in 90% of the Ebola samples, compared to a detection rates ranging from 65% to 92% for other rapid diagnostic tests and a rate of 95.7% associated with a standard RT-PCR diagnostic. It also showed excellent capabilities for detecting malaria, detecting infections in 100% of the malaria samples. These results, along with corresponding live virus and nonhuman primate testing of an Ebola, Lassa, and malaria 3-plex assay, indicate the potential of the SERS technology as an important tool for outbreak detection and clinical triage in low-resource settings.

John H. Connor, PhD, an associate professor of microbiology and senior author of the study, said, “One challenge in diagnosing Ebola and other infectious diseases with similar symptoms is the lack of an easy test to identify people with these conditions that can be used in the field. In this first feasibility study, our method showed good performance compared to existing laboratory tests for Ebola. If fully developed and commercialized, it could be more portable and less expensive than existing RT-PCR assays.” The study was published on December 12, 2018, in the journal Science Translational Medicine.

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
HLX
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: The study showed the blood-based cancer screening test detects 83% of people with colorectal cancer with specificity of 90% (Photo courtesy of Guardant Health)

Blood Test Shows 83% Accuracy for Detecting Colorectal Cancer

Colorectal cancer is the second biggest cause of cancer deaths among adults in the U.S., with forecasts suggesting 53,010 people might die from it in 2024. While fewer older adults are dying from this... Read more

Hematology

view channel
Image: The Gazelle Hb Variant Test (Photo courtesy of Hemex Health)

First Affordable and Rapid Test for Beta Thalassemia Demonstrates 99% Diagnostic Accuracy

Hemoglobin disorders rank as some of the most prevalent monogenic diseases globally. Among various hemoglobin disorders, beta thalassemia, a hereditary blood disorder, affects about 1.5% of the world's... Read more

Industry

view channel
Image: These new assays are being developed for use on the recently introduced DxI 9000 Immunoassay Analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter and Fujirebio Expand Partnership on Neurodegenerative Disease Diagnostics

Beckman Coulter Diagnostics (Brea, CA, USA) and Fujirebio Diagnostics (Tokyo, Japan) have expanded their partnership focused on the development, manufacturing and clinical adoption of neurodegenerative... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.