Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

bioMérieux

Designs, develops, manufactures and markets in vitro diagnostics systems used in clinical and industrial applications read more Featured Products: More products

Download Mobile App




MALDI-TOF Mass Spectrometry Differentiates Streptococcus Species

By LabMedica International staff writers
Posted on 02 May 2016
It is clinically relevant to distinguish Streptococcus pneumoniae from other less virulent, members of the viridans group streptococci (VGS) and accurate species determination within the VGS and more specifically within the mitis subgroup is traditionally difficult.

Matrix-assisted laser desorption ionization–time-of-flight (MALDI-TOF) mass spectrometry shows promising results for differentiation of species within the mitis group but further exploration and validation are needed. More...
To complicate the diagnostic challenges within the VGS, in 2004, a new species within the VGS that closely resembles S. pneumoniae was described and designated as S. pseudopneumoniae.

Medical microbiologists at the VU University Medical Center (Amsterdam, The Netherlands) evaluated the ability of two MALDI-TOF mass spectrometry platforms for species differentiation within the mitis subgroup. A panel consisting of 29 clinical and eight reference isolates was tested. The reference strains used included two S. pneumoniae, two S. pseudopneumoniae, two S. mitis and two S. oralis. As a gold standard, they combined real-time polymerase chain reaction (PCR) assays targeting the Autolysin-Encoding Gene (lytA), the recombinase A (recA), and Spn9802, which were adapted from previously described methods.

MALDI-TOF mass spectrometry was performed with either the Microflex platform (Bruker Daltonics; Bremen, Germany) or the Vitek MS platform (bioMérieux; Marcy l’Etiole, France). The PCR assays targeting the lytA and recA genes are specific for S. pneumoniae and S. pseudopneumoniae, respectively. The PCR assay targeting the Spn9802 fragment detects both S. pneumoniae and S. pseudopneumoniae but no other VGS. Hence, strains that tested negative in all three PCR assays were designated S. mitis/oralis.

The Vitek MS correctly identified 10/11 Streptococcus pneumoniae, 13/13 Streptococcus pseudopneumoniae, and 12/13 S. mitis/oralis. The Microflex correctly identified 9/11 S. pneumoniae, 0/13 S. pseudopneumoniae, and 13/13 S. mitis/oralis. MALDI-TOF is a powerful tool for species determination within the mitis group and diagnostic accuracy varies depending on platform and database used. The study was published in the May 2016 issue of the journal Diagnostic Microbiology and Infectious Disease.

Related Links:
VU University Medical Center
Bruker Daltonics
bioMérieux

Gold Member
Immunochromatographic Assay
CRYPTO Cassette
Gold Member
Automated MALDI-TOF MS System
EXS 3000
HBV DNA Test
GENERIC HBV VIRAL LOAD VER 2.0
Gold Member
Automatic Hematology Analyzer
DH-800 Series
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Research has linked platelet aggregation in midlife blood samples to early brain markers of Alzheimer’s (Photo courtesy of Shutterstock)

Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk

Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more

Pathology

view channel
Image: The AI tool combines patient data and images to detect melanoma (Photo courtesy of Professor Gwangill Jeon/Incheon National University)

AI Tool to Transform Skin Cancer Detection with Near-Perfect Accuracy

Melanoma continues to be one of the most difficult skin cancers to diagnose because it often resembles harmless moles or benign lesions. Traditional AI tools depend heavily on dermoscopic images alone,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.