We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




A Bacterial Lifestyle Switch Provides Antibiotic Resistance

By LabMedica International staff writers
Posted on 06 Jan 2016
Researchers have reported for the first time that following contact with certain antibiotics the pathogenic Bacillus cereus can switch into a special slowed-down mode and form small colony variants (SVCs) that are difficult to diagnose and almost impossible to treat with certain antibiotics.

Bacillus cereus causes vomiting and diarrhea as well as systemic and local infections such as sepsis or eye infections. More...
The newly discovered mechanism, from a study led by researchers from the Vetmeduni Vienna (University of Veterinary Medicine Vienna (Austria), provides an explanation for this and possibly other cases of antibiotic resistance.

B. cereus had so far been considered to be exclusively endospore-forming in response to harsh conditions. The new study discovered an alternative lifestyle in which B. cereus forms SCVs in response to exposure to aminoglycoside antibiotics. The B. cereus SCVs grow slower, have an altered metabolism, and provide resistance to aminoglycosides. “The bacterium protects itself against the harmful effects of the antibiotics by forming these SCVs. But B. cereus is usually treated with exactly those antibiotics which induce the SCV state. If an antibiotic triggers the formation of SCVs, it also triggers resistance,” explained first author Dr. Frenzel.

The discovery of this mechanism is of great significance for clinical practice and will require rethinking diagnostics and therapy. Traditional diagnostics are based on identification of metabolic features of B. cereus, but these tests do not detect SCVs. This may result in incorrect antibiotic therapies or even failed diagnoses. Molecular tests may be the only way to diagnose this form of B. cereus. Treating B. cereus infections using only aminoglycoside antibiotics could bear the risk of a prolonged infection. SCVs grow more slowly, but they still produce toxins that are harmful to the body. “In this case, a combination therapy with other antibiotic groups is advisable,” Dr. Frenzel recommends.

Another bacterium, Staphylococcus aureus, also forms SCVs, but is capable of reverting to its original state. For B. cereus, the SCV form appears to be final, suggesting a new mechanism. “We believe that the SCV formation in B. cereus functions differently than in S. aureus,” said coauthor Dr. Ehling-Schulz.

“The ability to form SCVs appears to be of environmental significance for the bacteria,” said Dr. Frenzel, “B. cereus are soil-dwelling, and other microorganism in the soil produce antibiotics. Here, too, the formation of SCVs would be an advantage for the bacteria.”

The study, by Frenzel E, Kranzler M et al., was published December 8, 2015, in the journal mBio.

Related Links:

University of Veterinary Medicine Vienna



Gold Member
Automated MALDI-TOF MS System
EXS 3000
Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
Gold Member
Collection and Transport System
PurSafe Plus®
Urine Chemistry Control
Dropper Urine Chemistry Control
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Research has linked platelet aggregation in midlife blood samples to early brain markers of Alzheimer’s (Photo courtesy of Shutterstock)

Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk

Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.