Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Events

10 Feb 2026 - 13 Feb 2026
17 Apr 2026 - 21 Apr 2026

Bacterial Toxin Sets the Course for Infection

By LabMedica International staff writers
Posted on 21 Nov 2013
Various toxins and effector proteins of bacterial pathogens have been found to manipulate eukaryotic cell machineries to promote persistence and proliferation within their hosts.

Some isolates of Yersinia pseudotuberculosis produce the cytotoxic necrotizing factor (CNFγ), but the functional consequences of this toxin for host-pathogen interactions during the infection are unknown.

Scientists at Helmholtz Center for Infection Research (Brunswick, Germany) cultured Yersinia strains in Luria-Bertani (LB) broth at 25 °C or 37 °C. More...
All DNA manipulations, polymerase chain reactions, restriction digestions, ligations, and transformations were performed using standard techniques. The β-galactosidase activity was determined for three independent cultures of bacteria.

Activation of Ras homolog gene family, member A (RhoA) was tested using the Rho activation assay kit (Millipore; Billerica, MA, USA) and activation of ras-related C3 botulinum toxin substrate 1 (Rac1) and cell division control protein 42 homolog (Cdc42) was determined with the Rho/Rac/Cdc42 Activation Assay Combo Kit (Cell Biolabs; San Diego, CA, USA).

In order to elucidate its function, the scientists genetically modified a bacterial strain that usually forms CNFγ in such a way that it lost the ability to produce this factor. They identified the molecular target that CNFγ manipulates, generating the dramatic consequences that involve the so-called small Rho guanosine triphosphate enzymes (GTPases). These enzymes initiate a whole cascade of events, for example alteration of the cytoskeleton. This leads to pores in the host cell surface, through which bacterial syringes can more efficiently transport active agents into the cell. The observed cell mortality of the immune cells is introduced through Rho GTPases as well.

Petra Dersch, PhD, a professor and senior author of the study explained, “We have discovered a very clever strategy of Yersinia pseudotuberculosis. With the aid of CNFγ, the bacterium manipulates the host cell in such a manner that the injection apparatus can work more effectively. It sets the course for an efficient infection and triggers onset of the disease.” The authors concluded that CNFγ is important for pathogenicity by showing that this toxin modulates inflammatory responses, protects the bacteria from attacks of innate immune effectors and enhances the severity of a Yersinia infection. The study was published on November 7, 2013, in the journal Public Library of Science Pathogens.

Related Links:

Helmholtz Centre for Infection Research
Millipore 
Cell Biolabs 



Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gram-Negative Blood Culture Assay
LIAISON PLEX Gram-Negative Blood Culture Assay
Autoimmune Liver Diseases Assay
Microblot-Array Liver Profile Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.