We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App

Study of Emerging Pathogens to Better Understand Influenza-Antibody Interactions Could Improve Diagnostics

By LabMedica International staff writers
Posted on 30 Jan 2023
Print article
Image: Scientists have won USD 9.5 million to study emerging pathogens (Photo courtesy of Pexels)
Image: Scientists have won USD 9.5 million to study emerging pathogens (Photo courtesy of Pexels)

Outbreaks of Avian influenza have occurred around the world for over a century. The highly pathogenic H5N1 virus which was first identified in 1996 can lead to severe disease and has a high fatality rate among humans. If the H5N1 virus mutates and becomes easily transmissible from person-to-person while simultaneously maintaining its capability to cause severe disease, there could be serious consequences for public health. For long, scientists have wondered why aquatic birds, particularly ducks, which are carriers of influenza viruses rarely become severely ill themselves. They are yet to find the answer to how their immune systems can be a reservoir for such a highly infectious and pathogenic virus, but still remain mostly unharmed. Also, scientists are yet to find out of the immune system can be engineered to stop transmission of viruses to other animals and humans, thereby preventing future pandemics. Now, a team of investigators will attempt to answer these questions as part of an ambitious, three-year project.

The project involving four faculty members at the University of Illinois Urbana-Champaign (UIUC, Urbana, IL, USA) was one of 13 selected by the Howard Hughes Medical Institute (HHMI, Chevy Chase, MD, USA) as part of its USD 100 million Emerging Pathogens Initiative that will provide USD 9.5 million over three years to the project. The work and the platforms developed by the group over the coming years will help scientists better understand other avian viruses or other host-virus relationships and the steps needed to prevent them from spreading.

The investigators will first attempt to develop ways to purify antibody-producing cells from ducks to better understand their antibody repertoire. They plan to extract immune cells from the blood of ducks, sequence the antibodies and characterize them, to finally assemble a pool of antibodies for further investigations. For instance, the investigators will determine the different strains of influenza an antibody that could be neutralized and how effective those antibodies could be in neutralizing the virus. Based on observations from their sequencing work, the team will translate them into human systems.

The influenza virus enters its host through mucosal routes such as the nasopharynx and lungs and gut. The investigators will adopt various engineering approaches to address the different ways in which the influenza virus invades its hosts. The business part of antibodies is a series of loops that are hypervariable. The immune system selects those loops that bind tightly to a molecule of the pathogen. These loops can be mimicked with circular peptides to create antibody-like molecules. The information derived about the antibodies from ducks and human cells can be used to design the cyclic peptides against avian influenza. Ultimately, their work could have implications beyond influenza. The researchers expect to develop “modular” antibody evolution and engineering platforms that can be easily repurposed for targeting other emerging pathogens. Additionally, the platforms could be adapted for developing biologics to treat other diseases such as cancer.

“We will use the information gathered and combine it with evolution platforms in human cells to study how the duck antibody sequences evolve,” said UIUC chemistry professor Dr. Angad Mehta. “We’ll also engineer and evolve these antibody sequences to make human antibodies. Overall, our efforts could inform biologics development, diagnostics, and vaccine design.”

“We are optimistic that this initiative will help these scientists develop new, untested approaches that can reveal how pathogens work and how the human immune system responds to pathogen infection,” said HHMI Vice President and Chief Scientific Officer Leslie Vosshall. “With this program, we hope to gain some of the knowledge and tools we need to get a scientific head start on future epidemics.”

Related Links:

Platinum Member
Flu SARS-CoV-2 Combo Test
OSOM® Flu SARS-CoV-2 Combo Test
Magnetic Bead Separation Modules
POCT Fluorescent Immunoassay Analyzer
Gold Member
Liquid Ready-To-Use Lp(a) Reagent
Lipoprotein (a) Reagent

Print article


Clinical Chemistry

view channel
Image: PhD student and first author Tarek Eissa has analyzed thousands of molecular fingerprints (Photo courtesy of Thorsten Naeser / MPQ / Attoworld)

Screening Tool Detects Multiple Health Conditions from Single Blood Drop

Infrared spectroscopy, a method using infrared light to study the molecular composition of substances, has been a foundational tool in chemistry for decades, functioning similarly to a molecular fingerprinting... Read more


view channel
Image: The Truvian diagnostic platform combines clinical chemistry, immunoassay and hematology testing in a single run (Photo courtesy of Truvian Health)

Automated Benchtop System to Bring Blood Testing To Anyone, Anywhere

Almost all medical decisions are dependent upon laboratory test results, which are essential for disease prevention and the management of chronic illnesses. However, routine blood testing remains limited worldwide.... Read more


view channel
Image: The Simplexa C. auris direct kit is a real-time polymerase chain reaction assay run on the LIAISON MDX instrument (Photo courtesy of Diasorin)

Novel Molecular Test to Help Prevent and Control Multi Drug-Resistant Fungal Pathogen in Healthcare Settings

Candida auris (C. auris) is a rapidly emerging multi drug-resistant fungal pathogen that is commonly found in healthcare environments, where it presents a challenge due to its ability to asymptomatically... Read more


view channel
Image: The tool can improve precision oncology by accurately predicting molecular subtypes and therapy responses (Photo courtesy of Shutterstock)

Computational Tool Integrates Transcriptomic Data for Improved Breast Cancer Diagnosis and Treatment

Breast cancer is the most commonly diagnosed cancer globally, presenting in various subtypes that require precise identification for effective, personalized treatment. Traditionally, cancer subtyping has... Read more


view channel
Image: Beckman Coulter will utilize the ALZpath pTau217 antibody to detect key biomarker for Alzheimer\'s disease on its DxI 9000 immunoassay analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter Licenses Alzpath's Proprietary P-tau 217 Antibody to Develop Alzheimer's Blood Test

Cognitive assessments have traditionally been the primary method for diagnosing Alzheimer’s disease, but this approach has its limitations as symptoms become apparent only after significant brain changes... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.