We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App




Autoimmunity-Associated T Cell Receptors Recognize HLA-Variant-Bound Peptides

By LabMedica International staff writers
Posted on 13 Dec 2022
Print article
Image: A T cell receptor that recognizes a human protein fragment (left) is remarkably similar to one that recognizes a bacterial protein fragment (right), and to two receptors capable of recognizing both human and bacterial protein fragments (middle) (Photo courtesy of Washington University School of Medicine)
Image: A T cell receptor that recognizes a human protein fragment (left) is remarkably similar to one that recognizes a bacterial protein fragment (right), and to two receptors capable of recognizing both human and bacterial protein fragments (middle) (Photo courtesy of Washington University School of Medicine)

The immune response in autoimmune disease recapitulates that of responses directed against infection, except that self-antigens are, or become, the target of the adaptive immune system. These self-antigens may drive a process that is localized within a specific organ, such as the thyroid gland (Grave’s disease, Hashimoto’s thyroiditis) or brain (multiple sclerosis).

Autoimmune disease occurs when an immune response attacks one’s own tissues. Like all adaptive immune responses, it is focused on specific antigens by T-cell receptors and B-cell receptors. In contrast to infection, the antigens that these cells recognize are processed from proteins within the target organ and this drives a chronic inflammatory process that disrupts the normal function of the tissue.

A large international team of immunologists partially led by those at Washington University School of Medicine in St. Louis (St Louis, MO, USA) investigated the theory that some T cells that react to microbes also may react to normal human proteins, causing autoimmune disease. The autoimmune diseases ankylosing spondylitis, which involves arthritis in the spine and pelvis, and acute anterior uveitis, which is characterized by inflammation in the eye, are both strongly associated with an HLA variant called HLA-B*27.

The team devised a method to identify protein fragments that drive a T cell response when combined with HLA-B*27, and mapped the fragments against the human genome and five bacterial genomes to identify proteins from which the fragments may have originated. They isolated orphan T cell receptors (TCRs) expressing a disease-associated public β-chain variable region–complementary-determining region 3β (BV9–CDR3β) motif2,3,4 from blood and synovial fluid T cells from individuals with ankylosing spondylitis (AS) and from the eye in individuals with acute anterior uveitis (AAU).

These TCRs showed consistent α-chain variable region (AV21) chain pairing and were clonally expanded in the joint and eye. The investigators used HLA-B*27:05 yeast display peptide libraries to identify shared self-peptides and microbial peptides that activated the AS- and AAU-derived TCRs. Structural analysis revealed that TCR cross-reactivity for peptide–MHC was rooted in a shared binding motif present in both self-antigens and microbial antigens that engages the BV9–CDR3β TCRs.

Michael Paley, MD, PhD, an Assistant Professor of Medicine and a co-author of the study, said, “For ankylosing spondylitis, the average time between initial symptoms and actual diagnosis is seven to eight years. Shortening that time with improved diagnostics could make a dramatic impact on patients' lives, because treatment could be initiated earlier. As for therapeutics, if we could target these disease-causing T cells for elimination, we could potentially cure a patient or maybe even prevent the disease in people with the high-risk genetic variant. There's a lot of potential for clinical benefit here.” The study was published on December 7, 2022 in the journal Nature.

Related Links:
Washington University School of Medicine

New
Gold Member
C-Reactive Protein Reagent
CRP Ultra Wide Range Reagent Kit
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Hemacytometer Cover Glasses
Propper Hemacytometer Cover Glasses
New
Gold Member
Thyroid Stimulating Hormone Assay
TSH EIA 96 Test

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The discovery of a new blood group has solved a 50- year-old mystery (Photo courtesy of 123RF)

Newly Discovered Blood Group System to Help Identify and Treat Rare Patients

The AnWj blood group antigen, a surface marker discovered in 1972, has remained a mystery regarding its genetic origin—until now. The most common cause of being AnWj-negative is linked to hematological... Read more

Microbiology

view channel
Image: The Accelerate Arc System has been granted US FDA 510(k) clearance (Photo courtesy of Accelerate Diagnostics)

Automated Positive Blood Culture Sample Preparation Platform Designed to Fight Against Sepsis and AMR

Delayed administration of antibiotics to patients with bloodstream infections significantly increases the risk of morbidity and mortality. For optimal therapeutic outcomes, it is crucial to rapidly identify... Read more

Pathology

view channel
Image: Confocal- & laminar flow-based detection scheme of intact virus particles, one at a time (Photo courtesy of Paz Drori)

Breakthrough Virus Detection Technology Combines Confocal Fluorescence Microscopy with Microfluidic Laminar Flow

Current virus detection often relies on polymerase chain reaction (PCR), which, while highly accurate, can be slow, labor-intensive, and requires specialized lab equipment. Antigen-based tests provide... Read more

Industry

view channel
Image: Last year, Seegene and Werfen has entered into a collaboration on the OneSystem business to develop syndromic qPCR assays (Photo courtesy of Seegene)

Seegene and Werfen Finalize Partnership Agreement on Technology-Sharing Initiative

Seegene (Seoul, South Korea), a leading PCR molecular diagnostics company, and Werfen (Barcelona, Spain), a global diagnostics specialist, have finalized a partnership agreement as part of a technology-sharing... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.