We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Abbott Diagnostics- Hematology Division

Download Mobile App


ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

Inherited Causes of Clonal Hematopoiesis in Multiplicity of Whole Genomes

By LabMedica International staff writers
Posted on 29 Oct 2020
Print article
Image: Mutations in cell free DNA (cfDNA) or cells in the peripheral blood along with anemia or thrombocytopenia are the hallmark of myelodysplastic syndrome (MDS). The diagnosis of MDS is confirmed when mutations in hematopoietic cells are detected at relatively high levels (Photo courtesy of Genomic Testing Cooperative).
Image: Mutations in cell free DNA (cfDNA) or cells in the peripheral blood along with anemia or thrombocytopenia are the hallmark of myelodysplastic syndrome (MDS). The diagnosis of MDS is confirmed when mutations in hematopoietic cells are detected at relatively high levels (Photo courtesy of Genomic Testing Cooperative).
The age-related acquisition of somatic mutations that lead to clonal expansion in regenerating hematopoietic stem cell populations has recently been associated with both hematological cancer and coronary heart disease, and this phenomenon is termed clonal hematopoiesis of indeterminate potential (CHIP).

As the name CHIP suggests, this subpopulation in the blood is characterized by a shared unique mutation in the cells' DNA; it is thought that this subpopulation is "clonally" derived from a single founding cell and is therefore made of genetic "clones" of the founder. Simultaneous analyses of germline and somatic whole-genome sequences provide the opportunity to identify root causes of CHIP.

A team of scientists at the Broad Institute (Cambridge, MA, USA) and their colleagues analyzed high-coverage whole-genome sequences from 97,691 participants of diverse ancestries in the National Heart, Lung, and Blood Institute Trans-omics for Precision Medicine (TOPMed) programme, and identify 4,229 individuals with CHIP. They noted that the prevalence of CHIP increased with the age at which the blood samples were taken from participants, as well as with a history of smoking.

The investigators identified associations with blood cell, lipid and inflammatory traits that are specific to different CHIP driver genes. Association of a genome-wide set of germline genetic variants enabled the identification of three genetic loci associated with CHIP status, including one locus at TET2 that was specific to individuals of African ancestry. About three-quarters of individuals with CHIP had mutations in just three genes: DNMT3A, TET2, and ASXL1. Some CHIP characteristics, they noted, varied by driver gene mutation. For instance, JAK2 CHIP mutation carriers were generally younger than other carriers, and TET2 CHIP carriers tended to have increased interleukin-1β (IL-1β levels), while JAK2 and SF3B1 carriers had increased circulating IL-18.

Within a subset of this cohort, the team conducted a single-variant genome-wide association analysis to uncover germline variants linked to CHIP. Through their analysis and subsequent replication, they uncovered one variant in TERT that was associated with a 1.3-fold increased risk of developing CHIP, as well as a variant near both KPNA4 and TRIM59 that was associated with a 1.16-fold increased risk and a variant near TET2 that was associated with a 2.4-fold increased risk of developing CHIP.

The authors concluded that germline genetic variation shapes hematopoietic stem cell function, leading to CHIP through mechanisms that are specific to clonal hematopoiesis as well as shared mechanisms that lead to somatic mutations across tissues. The study was published on October 14, 2020 in the journal Nature.

Related Links:
Broad Institute

Gold Supplier
SARS-CoV-2 Multiplex Real-Time RT-PCR Assay
GSD NovaPrime Plus SARS-CoV-2
3-Part Hematology Analyzer
H30 Pro
iFuge M5K Combi
Tuberculosis (TB) Test
QIAreach QuantiFERON-TB

Print article


Clinical Chem.

view channel
Image: Illustration is of the Vertical Auto Profile (VAP) Lipid test with clear demarcation of the different lipoprotein classes and subclasses. (Photo courtesy of VAP Diagnostics Laboratory)

Lipoprotein(a) Concentrations Correlate With LDL-C in Diabetic Children

Cardiovascular disease (CVD) is a significant cause of mortality in those with diabetes. Increased apolipoprotein B (apoB) and low-density lipoprotein cholesterol (LDL-C) have been shown in pediatric patients... Read more


view channel
Image: The UniCel DxH 800 Coulter Cellular Analysis System (Photo courtesy of Beckman Coulter)

Monocyte Distribution Width Predicts Sepsis in Critically Ill Patients

Sepsis has been reported as a major cause of increased morbidity, length of stay and mortality among patients hospitalized in Intensive Care Units (ICUs) for any cause. The survival of patients developing... Read more


view channel
Image: Procartaplex Immunoassays Kits are based on the principles of a sandwich ELISA, using two highly specific antibodies binding to different epitopes of one protein to quantitate all protein targets simultaneously (Photo courtesy of Thermo Fisher Scientific)

Assay Developed for Patient-Specific Monitoring and Treatment for Ovarian Cancer

Tumors can influence peripheral immune macroenvironment, thereby creating opportunities for non-invasive serum/plasma immunobiomarkers for immunostratification and immunotherapy designing.... Read more


view channel
Image: Clinical metagenomics (CMg) using nanopore sequencing (Photo courtesy of Oxford Nanopore Technologies)

Same Day Test Identifies Secondary Infections in COVID-19 Patients

The intensive care unit (ICU) is a dynamic environment with frequent staff-patient contact for invasive monitoring, interventions and personal care that together introduce the risk of secondary or nosocomial... Read more


view channel
Image: The Ventana BenchMark Ultra autostainer is for cancer diagnostics with automation and the test menu include IHC, ISH, and FITC tests (Photo courtesy of Ventana Medical System)

Specific Biomarker Investigated for Triple-Negative Breast Cancer Diagnosis

Triple-negative breast cancer (TNBC) is defined by the lack of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expression and comprises a heterogeneous... Read more


view channel
Image: PKeye Workflow Monitor System (Photo courtesy of PerkinElmer, Inc.)

PerkinElmer’s New Cloud-Based Platform Enables Laboratory Personnel to Remotely Manage Its Instruments in Real-Time

PerkinElmer, Inc. (Waltham, MA; USA) has launched its PKeye Workflow Monitor, a cloud-based platform enabling laboratory personnel to remotely manage and monitor their PerkinElmer instruments and workflows... Read more


view channel

Global HBA1c Laboratory Tests Market Driven by Rise in Diabetic Population

The global HBA1c laboratory tests market is projected to expand at a significant pace over the coming years, driven by an increase in the prevalence of diabetes, rise in prescription rate of HBA1c tests... Read more
Copyright © 2000-2021 Globetech Media. All rights reserved.