We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Aqueous Two-Phase Systems Enable Homogeneous Immunoassay Multiplexing

By LabMedica International staff writers
Posted on 28 Jul 2014
A novel test simplifies disease detection by enabling simultaneous detection of multiple proteins in blood plasma in only two hours.

The test can accurately and simultaneously measure multiple biomarker proteins that indicate the presence of diseases like graft-versus-host disease as happens in bone marrow transplant rejection and needs no washing steps, and uses only a minute volume of blood plasma.

Scientists at the University of Michigan (Ann Arbor, MI, USA) developed the protein test, which uses a micropatterning method. More...
To perform the assay, a few microliters of blood plasma is mixed with poly(ethylene glycol) and added to a microwell in a custom 384-well microplate. Next, microdroplets of dextran, containing complimentary pairs of antibody-beads, are dispensed into microbasins within the sample well. During two-hour incubation, target plasma protein biomarkers diffuse from the poly(ethylene glycol) phase to the dextran droplets and become sandwiched by the antibody beads. The microplate is then read on a commercially available plate reader.

The cross-reaction-free, multiplex assay can simultaneously detect picomolar concentrations of four protein biomarkers: C-X-C motif ligand 10 (CXCL10), CXCL9, interleukin (IL)-8 and IL-6 in cell supernatants using a single assay well. The potential clinical utility of the assay was demonstrated by detecting diagnostic biomarkers (CXCL10 and CXCL9) in plasma from 88 patients at the onset of the clinical symptoms of chronic graft-versus-host disease (GVHD).

Shuichi Takayama, PhD, a professor and a senior author of the study, said, “Just as oil and water remain immiscible, we use two aqueous solutions that do not mix with each other. Interestingly, these solutions can be patterned into arrays, whereas standard no-wash protein test reagents normally just mix together in solution. This novel capability makes it possible, for the first time, to measure multiple diagnostic proteins at a time in a no-wash format test.”

Arlyne Simon, PhD, the lead author of the study, said, “We envision that our user-friendly and highly accurate platform will be widely used by academic and clinical scientists for diagnostics as well as other applications. To ease the adoption of our technology into research and clinical labs, we designed custom microplates that can be analyzed by commercially available plate readers.” The study was published on June 2, 2014, in the journal TECHNOLOGY.

Related Links:

University of Michigan



Gold Member
Troponin T QC
Troponin T Quality Control
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Amoebiasis Test
ELI.H.A Amoeba
New
Silver Member
H-FABP Assay
Heart-Type Fatty Acid-Binding Protein Assay
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Pathology

view channel
Image: AI-analyzed images from the FDM microscope show platelet clumps in motion (Photo courtesy of Hirose et al CC-BY-ND)

AI Microscope Spots Deadly Blood Clots Before They Strike

Platelets are small blood cells that act as emergency responders in the body, rushing to areas of injury to help stop bleeding by forming clots. However, sometimes platelets can overreact, leading to complications.... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.