We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App





New Technique Identifies Potential False Positive COVID-19 Results from RT-PCR Tests

By LabMedica International staff writers
Posted on 23 Nov 2021

Researchers have developed and tested a process to identify potential false-positive COVID-19 results. More...

The method, developed and tested by researchers at the University of Missouri School of Medicine (Columbia, MO, USA), could help other laboratories prevent unnecessary quarantining and repeated testing of people who are not actually infected.

COVID-19 testing is an important tool for managing the virus during the pandemic, and reverse transcriptase polymerase chain reaction (RT-PCR) testing is the most widely used method. But while this type of test is considered reliable, it is associated with a small number of false positive results, most easily recognized in asymptomatic, non-exposed patients. To help ensure the accuracy of positive tests, the researchers have developed a protocol for repeat testing of all positive results involving asymptomatic and unexposed patients, and in all cases in which a specimen with a positive result was located in a testing well next to another specimen with a high virus load.

The team of researchers implemented the quality control protocol in September 2020. Over an eight-week period, 24,717 RT-PCR tests were performed. Of those, 6,251 came from asymptomatic patients. In that group, 288 specimens initially returned a positive result. A second test revealed 20 of these to be false positives.

“False positive diagnoses have important implications for patient management,” said Lester Layfield, MD, professor of pathology and anatomical sciences and director of the Molecular Diagnostics Laboratory. “False positives may lead to inappropriate quarantine, delay of other necessary medical treatment or transfer to a COVID-19 ward.”

“Retesting of positive results from asymptomatic individuals revealed some technologist errors but also contamination from positive specimens in adjacent specimen wells,” added Layfield. “This study should alert the laboratory testing community of the possibility of false positive COVID-19 tests.”

Related Links:
University of Missouri School of Medicine 


Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gold Member
Collection and Transport System
PurSafe Plus®
ESR Analyzer
TEST1 2.0
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Neuron-derived extracellular vesicles carry many biomarker candidates for Alzheimer’s (S Chinnathambi et al., Brain Network Disorders (2025). doi.org/10.1016/j.bnd.2024.12.006)

Neuron-Derived Extracellular Vesicles Could Improve Alzheimer’s Diagnosis

Alzheimer’s disease is becoming increasingly common as global populations age, yet effective treatments for advanced stages remain limited. Early detection is therefore critical, but current diagnostic... Read more

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more

Pathology

view channel
Image: The AI tool advances precision diagnostics by linking genetic mutations directly to disease types (Photo courtesy of Shutterstock)

AI Tool Simultaneously Identifies Genetic Mutations and Disease Type

Interpreting genetic test results remains a major challenge in modern medicine, particularly for rare and complex diseases. While existing tools can indicate whether a genetic mutation is harmful, they... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.