We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App





Artificial Intelligence (AI) Model Identifies COVID-19 Patients Using Blood Tests and Chest X-Rays

By LabMedica International staff writers
Posted on 19 Jul 2021
Researchers have developed a machine learning (ML) application for the prediction of SARS-CoV-2 infection using blood tests and chest radiograph.

The ML model developed by researchers at The University of Hong Kong (Hong Kong) was able to achieve high accuracy for the prediction of SARS-CoV-2 infection in a validation study. More...
The adjunctive use of chest radiograph could play a role in increasing sensitivity while achieving moderate specificity when combined with ML blood model, which may have potential implications in triaging patients, particularly when RT-PCR testing resources are scarce.

The objective of this study was to apply ML for the task of COVID-19 detection using basic laboratory markers and explore the adjunctive role of chest radiographs. The researchers initially performed a statistical comparison of blood tests in patients with different aetiologies of pneumonia, including COVID-19 involving 5,148 patients in 24 hospitals in Hong Kong during the first and second waves of infection. This was done to establish a baseline laboratory comparison between COVID-19 from other pneumonia and other diagnoses. The researchers then trained and validated ML models using basic blood tests with comparison to reference RT-PCR testing to predict COVID-19 infection status, and explore different use case scenarios with adjunction of chest radiographs. The models were then validated with temporal validation sets across other waves of infection in Hong Kong.

For predicting SARS-CoV-2 infection, the ML model achieved high AUCs and specificity but low sensitivity in all three validation sets (AUC: 89.9-95.8%; Sensitivity: 55.5-77.8%; Specificity: 91.5-98.3%). When used in adjunction with radiologist interpretations of chest radiographs, the sensitivity was over 90% while keeping moderate specificity. The study showed that ML model based on readily available laboratory markers could achieve high accuracy in predicting SARS-CoV-2 infection.

Related Links:
The University of Hong Kong


Gold Member
Universal Transport Solution
Puritan®UniTranz-RT
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Capillary Blood Collection Tube
IMPROMINI M3
Human Estradiol Assay
Human Estradiol CLIA Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Whole-genome sequencing enables broader detection of DNA repair defects to guide PARP inhibitor cancer therapy (Photo courtesy of Illumina)

Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment

Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more

Pathology

view channel
Image: AI models combined with DOCI can classify thyroid cancer subtypes (Photo courtesy of T. Vasse et al., doi 10.1117/1.BIOS.3.1.015001)

AI-Powered Label-Free Optical Imaging Accurately Identifies Thyroid Cancer During Surgery

Thyroid cancer is the most common endocrine cancer, and its rising detection rates have increased the number of patients undergoing surgery. During tumor removal, surgeons often face uncertainty in distinguishing... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.