We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App





Artificial Intelligence (AI) Model Identifies COVID-19 Patients Using Blood Tests and Chest X-Rays

By LabMedica International staff writers
Posted on 19 Jul 2021
Researchers have developed a machine learning (ML) application for the prediction of SARS-CoV-2 infection using blood tests and chest radiograph.

The ML model developed by researchers at The University of Hong Kong (Hong Kong) was able to achieve high accuracy for the prediction of SARS-CoV-2 infection in a validation study. More...
The adjunctive use of chest radiograph could play a role in increasing sensitivity while achieving moderate specificity when combined with ML blood model, which may have potential implications in triaging patients, particularly when RT-PCR testing resources are scarce.

The objective of this study was to apply ML for the task of COVID-19 detection using basic laboratory markers and explore the adjunctive role of chest radiographs. The researchers initially performed a statistical comparison of blood tests in patients with different aetiologies of pneumonia, including COVID-19 involving 5,148 patients in 24 hospitals in Hong Kong during the first and second waves of infection. This was done to establish a baseline laboratory comparison between COVID-19 from other pneumonia and other diagnoses. The researchers then trained and validated ML models using basic blood tests with comparison to reference RT-PCR testing to predict COVID-19 infection status, and explore different use case scenarios with adjunction of chest radiographs. The models were then validated with temporal validation sets across other waves of infection in Hong Kong.

For predicting SARS-CoV-2 infection, the ML model achieved high AUCs and specificity but low sensitivity in all three validation sets (AUC: 89.9-95.8%; Sensitivity: 55.5-77.8%; Specificity: 91.5-98.3%). When used in adjunction with radiologist interpretations of chest radiographs, the sensitivity was over 90% while keeping moderate specificity. The study showed that ML model based on readily available laboratory markers could achieve high accuracy in predicting SARS-CoV-2 infection.

Related Links:
The University of Hong Kong


Gold Member
Flu SARS-CoV-2 Combo Test
OSOM® Flu SARS-CoV-2 Combo Test
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Automatic CLIA Analyzer
Shine i9000
Gold Member
Ketosis and DKA Test
D-3-Hydroxybutyrate (Ranbut) Assay
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: LiDia-SEQ aims to deliver near-patient NGS testing capabilities to hospitals, labs and clinics (Photo courtesy of DNAe)

World's First NGS-Based Diagnostic Platform Fully Automates Sample-To-Result Process Within Single Device

Rapid point-of-need diagnostics are of critical need, especially in the areas of infectious disease and cancer testing and monitoring. Now, a direct-from-specimen platform that performs genomic analysis... Read more

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more

Pathology

view channel
Image: The AI tool advances precision diagnostics by linking genetic mutations directly to disease types (Photo courtesy of Shutterstock)

AI Tool Simultaneously Identifies Genetic Mutations and Disease Type

Interpreting genetic test results remains a major challenge in modern medicine, particularly for rare and complex diseases. While existing tools can indicate whether a genetic mutation is harmful, they... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.