We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App





Microfluidics-Based POC Diagnostic Devices for COVID-19 More Accurate than Lateral Flow Assays, Finds Frost & Sullivan

By LabMedica International staff writers
Posted on 27 May 2021
With the COVID-19 outbreak rapidly decentralizing healthcare diagnostics, the use of microfluidics-based point-of-care (POC) diagnostic devices can provide higher accuracy as compared to conventional lateral flow assays.

These are the latest findings of a recent analysis by Frost & Sullivan (Santa Clara, CA, USA). More...
The analysis found that the scientific community has made tremendous progress in making microfluidics more autonomous with the integration of new powering mechanisms and sensor technologies, which can enable at-home or self-test devices. New materials with new capabilities, along with advanced fabrication and manufacturing technologies, are entering the space, leading to more integrated, capable, and affordable microfluidic-based POC devices. Additionally, with the COVID-19 outbreak rapidly decentralizing healthcare diagnostics, the use of microfluidics-based POC diagnostic devices can provide higher accuracy compared to conventional lateral flow assays.

Frost & Sullivan's analysis suggests that key companies and investors need to focus on the various growth opportunities to optimize the capabilities of microfluidic and nanofluidic technologies. Companies can exploit the technological advances in integrated sensors and self-powered microfluidic devices to build autonomous microfluidic systems for at-home or self-testing diagnostic devices. POC diagnostic companies can adopt 3D printing to develop and launch new products using the 3D manipulation of fluids and surfaces. Additionally, real-time health assessments are growing in importance because they enable personalized medicine, which is a current healthcare trend. Therefore, Frost & Sullivan's analysis recommends exploring flexible microfluidics technology to develop new wearable sensors. IoT-based and connected diagnostic platforms such as wearable sensors are the future of POC diagnostics. With telemedicine growing in demand due to the COVID-19 pandemic, it is essential to connect POC diagnostic devices to the internet, according to the analysis.

"The high cost of the current microfluidic cartridge readers and difficulty in fabricating complex microfluidic devices demand the adoption of disruptive sensor and fabrication technologies to develop more autonomous and cost-effective devices. Further, new materials and fabrication technologies are already being explored for the low-cost, mass production of devices. As a result, POC diagnosis is expected to be more autonomous, enabling at-home tests in three to five years," said Dr. Sneha Maria Mariawilliam, TechVision Senior Research Analyst at Frost & Sullivan. "The future of POC diagnosis includes a non-invasive or minimally invasive and self-powered epidermal microfluidic device, which can draw and use very small samples for multiplexed analysis of analytes and is integrated with information technologies."

"As healthcare is moving toward patient-centered care and personalization, investing in and developing technologies such as epidermal microfluidics, artificial intelligence (AI), and Internet of Things (IoT) will enable companies to be frontrunners in the industry. Keeping track of and investing in technological advancements in materials, fabrication, and sensors to build self-powered and autonomous POC devices is essential for designing and developing more integrated and cost-effective solutions, and also penetrating new POC settings such as self-testing and home care," added Mariawilliam.

Related Links:
Frost & Sullivan


Gold Member
SARS-CoV-2 Reactive & Non-Reactive Controls
Qnostics SARS-CoV-2 Typing
Portable Electronic Pipette
Mini 96
New
CBM Analyzer
Complete Blood Morphology (CBM) Analyzer
New
Gold Member
Hybrid Pipette
SWITCH
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: A schematic illustrating the coagulation cascade in vitro (Photo courtesy of Harris, N., 2024)

ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners

Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read more

Microbiology

view channel
Image: The rapid diagnostic test is being piloted across three UK hospitals (Photo courtesy of Imperial College Healthcare)

15-Minute Blood Test Diagnoses Life-Threatening Infections in Children

Distinguishing minor childhood illnesses from potentially life-threatening infections such as sepsis or meningitis remains a major challenge in emergency care. Traditional tests can take hours, leaving... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.