We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App





Microfluidics-Based POC Diagnostic Devices for COVID-19 More Accurate than Lateral Flow Assays, Finds Frost & Sullivan

By LabMedica International staff writers
Posted on 27 May 2021
With the COVID-19 outbreak rapidly decentralizing healthcare diagnostics, the use of microfluidics-based point-of-care (POC) diagnostic devices can provide higher accuracy as compared to conventional lateral flow assays.

These are the latest findings of a recent analysis by Frost & Sullivan (Santa Clara, CA, USA). More...
The analysis found that the scientific community has made tremendous progress in making microfluidics more autonomous with the integration of new powering mechanisms and sensor technologies, which can enable at-home or self-test devices. New materials with new capabilities, along with advanced fabrication and manufacturing technologies, are entering the space, leading to more integrated, capable, and affordable microfluidic-based POC devices. Additionally, with the COVID-19 outbreak rapidly decentralizing healthcare diagnostics, the use of microfluidics-based POC diagnostic devices can provide higher accuracy compared to conventional lateral flow assays.

Frost & Sullivan's analysis suggests that key companies and investors need to focus on the various growth opportunities to optimize the capabilities of microfluidic and nanofluidic technologies. Companies can exploit the technological advances in integrated sensors and self-powered microfluidic devices to build autonomous microfluidic systems for at-home or self-testing diagnostic devices. POC diagnostic companies can adopt 3D printing to develop and launch new products using the 3D manipulation of fluids and surfaces. Additionally, real-time health assessments are growing in importance because they enable personalized medicine, which is a current healthcare trend. Therefore, Frost & Sullivan's analysis recommends exploring flexible microfluidics technology to develop new wearable sensors. IoT-based and connected diagnostic platforms such as wearable sensors are the future of POC diagnostics. With telemedicine growing in demand due to the COVID-19 pandemic, it is essential to connect POC diagnostic devices to the internet, according to the analysis.

"The high cost of the current microfluidic cartridge readers and difficulty in fabricating complex microfluidic devices demand the adoption of disruptive sensor and fabrication technologies to develop more autonomous and cost-effective devices. Further, new materials and fabrication technologies are already being explored for the low-cost, mass production of devices. As a result, POC diagnosis is expected to be more autonomous, enabling at-home tests in three to five years," said Dr. Sneha Maria Mariawilliam, TechVision Senior Research Analyst at Frost & Sullivan. "The future of POC diagnosis includes a non-invasive or minimally invasive and self-powered epidermal microfluidic device, which can draw and use very small samples for multiplexed analysis of analytes and is integrated with information technologies."

"As healthcare is moving toward patient-centered care and personalization, investing in and developing technologies such as epidermal microfluidics, artificial intelligence (AI), and Internet of Things (IoT) will enable companies to be frontrunners in the industry. Keeping track of and investing in technological advancements in materials, fabrication, and sensors to build self-powered and autonomous POC devices is essential for designing and developing more integrated and cost-effective solutions, and also penetrating new POC settings such as self-testing and home care," added Mariawilliam.

Related Links:
Frost & Sullivan


Gold Member
Multiplex Genetic Analyzer
MassARRAY Dx Analyzer (Europe only)
Portable Electronic Pipette
Mini 96
New
Sample Transportation System
Tempus1800 Necto
New
Automatic Chemiluminescence Immunoassay Analyzer
Shine i2000
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: AiPlex VAS for the MosaiQ platform is designed to help reduce time-to-diagnosis for patients with autoimmune vasculitis (Photo courtesy of AliveDx)

Novel Multiplex Assay Supports Diagnosis of Autoimmune Vasculitis

Autoimmune vasculitis and related conditions are difficult to diagnose quickly and accurately, often requiring multiple tests to confirm the presence of specific autoantibodies. Traditional methods can... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Technology

view channel
Image: The sensor can help diagnose diabetes and prediabetes on-site in a few minutes using just a breath sample (Photo courtesy of Larry Cheng/Penn State)

Graphene-Based Sensor Uses Breath Sample to Identify Diabetes and Prediabetes in Minutes

About 37 million U.S. adults live with diabetes, and one in five is unaware of their condition. Diagnosing diabetes often requires blood draws or lab visits, which are costly and inconvenient.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.