Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App





Coronavirus Screening Platform Uses Machine Learning Algorithms to Detect SARS-CoV-2 Structural Fingerprint in Real Time

By LabMedica International staff writers
Posted on 27 Aug 2020
A screening platform that can identify biological threats by shining a laser onto the sample and interpreting the light that scatters is being used to develop a coronavirus screening platform, according to a report by BioSpace.

Botanisol Analytics (Phoenix, AZ, USA) is developing the screening platform that can identify biological threats, including contaminants and pathogens (such as the novel coronavirus), by shining a laser onto the sample. More...
The screener uses next generation Raman spectroscopy, which generates a unique structural ‘fingerprint’ for each molecule or even entire structures, such as whole cells or viruses. The laser interacts with the molecules in the sample, which absorb its energy and emit a higher or lower energy light. A detector collects the new light wavelengths that are emitted and turns them into digital input. A computer interprets the results to produce a Raman spectrum, the unique patterns of scattered light wavelengths represented as peaks. Artificial intelligence can then scan a spectrum to check for any unique patterns related to specific molecules or pathogens.

Using machine learning algorithms, the technology can identify salient differences between healthy and infected cells which could be present in an upper respiratory or saliva sample. As a coronavirus screener, the test output would be if someone is at low or high risk of carrying the virus, allowing people to be quickly grouped for release (low risk) or triage for further testing (high risk), according to BioSpace. The device could screen people for COVID-19 in real time, providing answers about what is in a sample in a matter of minutes. Botanisol’s ‘next generation’ system is also extremely sensitive and is able to detect something in the sample down to parts per million (ppm) or trillion (ppt), thanks to the use of a new type of laser that produces the smallest wavelength able to be transmitted through air under normal conditions, according to the BioSpace report.

“It’s a real-time snapshot of all the molecules in a patient’s sample,” David Talenfeld, JD, MBA, MGM, CEO of Botanisol, told BioSpace. “The device can be calibrated to detect a chemical or pathogen, like coronavirus, whose spectral ‘fingerprint’ is known."

“In the future you could take samples from people getting off of an airplane, quickly screening everyone,” added Talenfeld. “The people identified as ‘high risk’ for carrying coronavirus can be diverted to a special waiting area for further testing.”

Related Links:
Botanisol Analytics


Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Portable Electronic Pipette
Mini 96
New
Rapid Molecular Testing Device
FlashDetect Flash10
New
ESR Analyzer
TEST1 2.0
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.