We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Miniaturized Gene Editing for Treatment of Macular Regeneration

By LabMedica International staff writers
Posted on 10 Mar 2017
Print article
Image: A model of an adeno-associated virus containing the DNA coding for the RNA guide, the Cas9 protein derived from Campylobacter jejuni, and the fluorescent reporter protein (GFP). This is possible because of the small size of Cas9 (Photo courtesy of the Institute for Basic Science).
Image: A model of an adeno-associated virus containing the DNA coding for the RNA guide, the Cas9 protein derived from Campylobacter jejuni, and the fluorescent reporter protein (GFP). This is possible because of the small size of Cas9 (Photo courtesy of the Institute for Basic Science).
A viral vector was used to insert a very small CRISPR/Cas9 gene-editing tool into mouse muscle cells or retinal pigment epithelium cells, where it induced mutations that partially cured laser damage that mimicked human chronic age-related macular degeneration.

CRISPRs (clustered regularly interspaced short palindromic repeats) are segments of prokaryotic DNA containing short repetitions of base sequences. Each repetition is followed by short segments of "spacer DNA" from previous exposures to a bacterial virus or plasmid. CRISPRs are found in approximately 40% of sequenced bacteria genomes and 90% of sequenced archaea. CRISPRs are often associated with cas genes that code for proteins related to CRISPRs. Since 2013, the CRISPR/Cas system has been used in research for gene editing (adding, disrupting, or changing the sequence of specific genes) and gene regulation. By delivering the Cas9 enzyme and appropriate guide RNAs (sgRNAs) into a cell, the organism's genome can be cut at any desired location. The conventional CRISPR/Cas9 system is composed of two parts: the Cas9 enzyme, which cleaves the DNA molecule and specific RNA guides that shepherd the Cas9 protein to the target gene on a DNA strand.

CRISPR/Cas9 has to be delivered to target cells by plasmids or viruses. The standard Streptococcus pyogenes protein at 1,368 amino acids as well as the most commonly used alternative, Staphylococcus aureus Cas9 at 1,053 amino acids, are both too large to be packaged in a viral vector. Therefore, investigators at the Institute for Basic Science chose to work with Cas9 from Campylobacter jejuni (CjCas9), which at only 984 amino acids is small enough to be packed in the viral vector together with more than one guide RNA as well as with a fluorescent reporter protein.

The investigators reported in the February 21, 2017, online edition of the journal Nature Communications that CjCas9 was highly specific, cleaving only a limited number of sites in the human or mouse genome. CjCas9, delivered via an adeno-associated virus (AAV) vector, induced targeted mutations at high frequencies in mouse muscle cells or retinal pigment epithelium (RPE) cells. Furthermore, CjCas9 targeted to the Vegfa or Hif1a gene in RPE cells reduced the size of laser-induced choroidal neovascularization, suggesting that in vivo genome editing with CjCas9 could be a new option for the treatment of age-related macular degeneration.

"AAV is an efficient and safe vector to express a gene of interest in vivo and has been used widely in gene therapy," said senior author Dr. Kim Jin-Soo, director of the center for genome engineering at the Institute for Basic Science. "CjCas9 is highly specific and does not cause off-target mutations in the genome."

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: Comparison of traditional histopathology imaging vs. PARS raw data (Photo courtesy of University of Waterloo)

AI-Powered Digital Imaging System to Revolutionize Cancer Diagnosis

The process of biopsy is important for confirming the presence of cancer. In the conventional histopathology technique, tissue is excised, sliced, stained, mounted on slides, and examined under a microscope... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.