We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Cancer Researchers Identify Factors That Drive Melanoma Metastasis

By LabMedica International staff writers
Posted on 23 Feb 2017
Print article
Image: A laboratory-generated melanoma tumor (Photo courtesy of Dr. Aaron Smith, Queensland University of Technology).
Image: A laboratory-generated melanoma tumor (Photo courtesy of Dr. Aaron Smith, Queensland University of Technology).
Cancer researchers have traced a molecular pathway that cycles melanoma cells between modes that favor growth of the primary tumor (progression) and modes that favor invasion of other parts of the body (metastasis).

Cancer is characterized by uncontrolled growth of cells, but if uncontrolled growth was the only problem then cancer cells would be easily treated with surgery in most cases. What makes cancer deadly is its tendency to invade tissue and migrate to other regions of the body. Metastatic melanoma is one of the most aggressive and difficult to treat of all cancer types.

Melanoma is a heterogeneous cancer, made up of many cellular populations that differ in their ability to induce tumor growth or invasion throughout the body. These populations have been found to switch back and forth to drive invasion and progression. This process appears to be controlled by opposing action of two genes, MITF (Microphthalmia-associated transcription factor) and BRN2 (POU class 3 homeobox 2).

Investigators at Queensland University of Technology reported in a paper published in the January 14, 2017, online edition of the journal EBiomedicine that the NFIB (nuclear factor I B) transcription factor was a novel downstream effector of BRN2 function in melanoma cells linked to the migratory and invasive characteristics of these cells. Furthermore, the function of NFIB appeared to drive an invasive phenotype through an epigenetic mechanism achieved via the upregulation of the polycomb group protein EZH2 (Enhancer of zeste homolog 2).

"BRN2 function reduces MITF expression to slow down proliferation and put the cells into invasive mode," said senior author Dr. Aaron Smith, lecturer in the school of biomedical science at Queensland University of Technology. "Our project has identified a pathway that allows BRN2 to do this, firstly by increasing the expression of another regulatory factor called NFIB that further controls an invasive program in these cells."

"An important target of NFIB is an enzyme called EZH2 which then produces global (wide ranging) changes to the cells activity. EZH2 favors the expression of invasive genes and also turns "off" MITF to prevent proliferation, further re-enforcing the invasive capability of the tumor cells", said Dr. Smith. "We have evidence the NFIB-EZH2 pathway may also underpin metastasis of other cancer types as well such as lung cancer. The good news is there are drugs to chemically inhibit EZH2 which are already in pre-clinical trials and which could be used to block the invasion."

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: Comparison of traditional histopathology imaging vs. PARS raw data (Photo courtesy of University of Waterloo)

AI-Powered Digital Imaging System to Revolutionize Cancer Diagnosis

The process of biopsy is important for confirming the presence of cancer. In the conventional histopathology technique, tissue is excised, sliced, stained, mounted on slides, and examined under a microscope... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.