We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




High-Resolution Cryo-EM Images Increase Understanding of Anti-Ebola Drug

By LabMedica International staff writers
Posted on 18 Aug 2016
Print article
Image: A molecular model showing the experimental antibody drug ZMapp binding to the Ebola virus, here targeting the virus\'s GP protein (Photo courtesy of Dr. Andrew Ward and Dr. Jesper Pallesen, Scripps Research Institute).
Image: A molecular model showing the experimental antibody drug ZMapp binding to the Ebola virus, here targeting the virus\'s GP protein (Photo courtesy of Dr. Andrew Ward and Dr. Jesper Pallesen, Scripps Research Institute).
High-resolution cryo-electron microscopy images have revealed more precise information as to how the experimental drug ZMapp binds to the Ebola virus and provide insights into how the drug prevents growth of the pathogen.

ZMapp, which was developed by Mapp Biopharmaceutical (San Diego, CA, USA), is composed of three monoclonal antibodies (mAbs) that have been chimerized by genetic engineering. The components are chimeric monoclonal antibody c13C6 from a previously existing antibody cocktail called MB-003 and two chimeric mAbs from a different antibody cocktail called ZMab, c2G4 and c4G7.

Investigators at The Scripps Research Institute (La Jolla, CA, USA) used high-resolution cryo-electron microscopy (cryo-EM) techniques to study the interaction between ZMapp and two Ebola glycoproteins. The more abundant glycoprotein was the secreted dimeric glycoprotein (sGP). Despite the abundance of sGP during infection, little was known regarding its structure or functional role. A minor product, resulting from transcriptional editing, was the transmembrane-anchored, trimeric viral surface glycoprotein (GP). GP mediated attachment to and entry into host cells, and was the intended target of antibody therapeutics. Because large portions of sequence were shared between GP and sGP, it had been hypothesized that sGP may potentially subvert the immune response or may contribute to pathogenicity.

Researchers have historically relied on NMR and X-ray diffraction techniques to determine the structures of molecular complexes and proteins that play a role in the causes of various disease states. Structural information about a variety of medically important proteins and drugs has been obtained by these methods. Cryo-EM is a complementary analytical technique that provides near-atomic resolution without requirements for crystallization or limits on molecular size and complexity imposed by the other techniques. Cryo-EM allows the observation of specimens that have not been stained or fixed in any way, showing them in their native environment while integrating multiple images to form a three-dimensional model of the sample.

In the August 8, 2016, online edition of the journal Nature Microbiology, the investigators presented the cryo-electron microscopy structures of GP and sGP in complex with GP-specific and GP/sGP cross-reactive antibodies undergoing human clinical trials. The structure of the sGP dimer in complex with both an sGP-specific antibody and a GP/sGP cross-reactive antibody, permitted the investigators to unambiguously assign the oligomeric arrangement of sGP and compare its structure and epitope presentation to those of GP.

"This sGP protein is tremendously important," said Dr. Erica Ollmann Saphire, a professor at the Scripps Research Institute. "This is the roadmap we need to target the right molecules in infection. Eighty to 90% of what Ebola virus makes in infection is this shed molecule. It is like a smoke screen, and we need to know where it is similar to our target GP and where it is different."

Related Links:
Mapp Biopharmaceutical
The Scripps Research Institute
Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: Comparison of traditional histopathology imaging vs. PARS raw data (Photo courtesy of University of Waterloo)

AI-Powered Digital Imaging System to Revolutionize Cancer Diagnosis

The process of biopsy is important for confirming the presence of cancer. In the conventional histopathology technique, tissue is excised, sliced, stained, mounted on slides, and examined under a microscope... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.