We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Some CRISPR Gene Editing Complexes Target RNA

By LabMedica International staff writers
Posted on 15 Mar 2016
Print article
Image: Representation of the crystal structure of a CRISPR-associated protein (Photo courtesy of Wikimedia Commons).
Image: Representation of the crystal structure of a CRISPR-associated protein (Photo courtesy of Wikimedia Commons).
A team of molecular microbiologists have demonstrated that in some bacteria the CRISPR/Cas genome editing complex can edit RNA as well as DNA.

CRISPRs (clustered regularly interspaced short palindromic repeats) are segments of prokaryotic DNA containing short repetitions of base sequences. Each repetition is followed by short segments of "spacer DNA" from previous exposures to a bacterial virus or plasmid. CRISPRs are found in approximately 40% of sequenced bacteria genomes and 90% of sequenced archaea. CRISPRs are often associated with Cas genes that code for proteins related to CRISPRs. Since 2013, the CRISPR/Cas system has been used in research for gene editing (adding, disrupting, or changing the sequence of specific genes) and gene regulation. By delivering the Cas9 enzyme and appropriate guide RNAs into a cell, the organism's genome can be cut at any desired location. The conventional CRISPR/Cas9 system is composed of two parts: the Cas9 enzyme, which cleaves the DNA molecule and specific RNA guides (CRISPRs) that shepherd the Cas9 protein to the target gene on a DNA strand.

CRISPR systems are phylogenetically grouped into five types (types I to V). In addition to the CRISPR/Cas9 complex, CRISPR-associated Cas1 and Cas2 proteins have been shown to enable adaptation to new viral threats in type I and II CRISPR systems by the acquisition of short segments of DNA (spacers) from invasive elements. In several type III CRISPR systems, Cas1 is naturally fused to a reverse transcriptase (RT) enzyme.

Such an arrangement suggested the possibility of a spacer integration mechanism involving Cas1 integrase activity and the reverse transcription of RNA to DNA. This would enable the acquisition of new spacers from RNA, potentially generating adaptive immunity against RNA-based viruses. To test this hypothesis, investigators at the Carnegie Institution for Science Department of Plant Biology (Stanford, CA, USA) characterized the spacer acquisition machinery of the RT-Cas1–containing type III-B CRISPR system in the bacterium Marinomonas mediterranea (MMB-1), by means of in vivo assays and in vitro reconstitution.

Results published in the February 26, 2016, issue of the journal Science revealed that a natural RT-Cas1 fusion protein in a type III CRISPR system could enable the acquisition of new spacers directly from RNA. With other type III CRISPR systems known to target RNA for degradation, RT-associated CRISPR-Cas systems would effectively generate adaptive immunity against RNA parasites.

Contributing author Dr. Devaki Bhaya professor of biology at the Carnegie Institution of Science Department of Plant Biology, said, "The team has demonstrated that this biochemical process can occur in the lab, and based on this information, the CRISPR/Cas system may confer immunity against RNA-based invaders out there in the wild. It is gratifying to see how much we can learn from the extraordinary protein diversity that exists in the microbial and viral world, especially when it is combined with rigorous biochemistry."

Related Links:

Carnegie Institution for Science Department of Plant Biology


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: Comparison of traditional histopathology imaging vs. PARS raw data (Photo courtesy of University of Waterloo)

AI-Powered Digital Imaging System to Revolutionize Cancer Diagnosis

The process of biopsy is important for confirming the presence of cancer. In the conventional histopathology technique, tissue is excised, sliced, stained, mounted on slides, and examined under a microscope... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.